

Разбор заданий муниципального этапа всероссийской олимпиады школьников по астрономии для 10 класса

2025/2026 учебного года в Свердловской области

Разработчик – Кулеш Максим Вячеславович, УрФУ

В таблице вам предложены 8 событий в истории астрономии.

- А. Событие под каким номером произошло позже всех нижеперечисленных?
- В. Событие под каким номером произошло раньше всех нижеперечисленных?
- С. Расположите номера всех событий в хронологическом порядке, от самого раннего до самого позднего, и приведите в виде строки из 8 чисел.

№	Событие
1	Открытие законов Кеплера
2	Создание первой фотографии Солнца Луи Физо и Леоном Фуко
3	Запуск космического телескопа имени Хаббла
4	Создание первого телескопа Галилео Галилеем
5	Создание первой фотографии солнечного спектра Генри Дрейпером
6	Открытие Урана Уильямом Гершелем
7	Создание первого радиотелескопа Гроутом Ребером
8	Создание классической механики Исааком Ньютоном

Знание истории науки и техники и логические рассуждения помогут правильно расставить события:

Запуск космического телескопа имени Хаббла стоил около 6 млрд долларов, потребовал применения большого числа технологий и совместной работы огромного числа ученых, инженеров и конструкторов. Он появился явно позже всех остальных.

Создание первого телескопа Галилео Галилеем и последующие наблюдения Луны, планет и их спутников телескопом - одни из ключевых событий астрономии XVII века, которые привели к смене центра мира (гелиоцентрическая система пришла на смену геоцентрической). Астрономия невозможна без наблюдений, и Галилео впервые сделал эти наблюдения "вооруженными".

Открытие Урана (6) не могло произойти до ньютоновской механики (8), а для её создания Ньютон опирался на труды Кеплера (1), который, в свою очередь, уже использовал некоторые телескопические наблюдения (4) Радионаблюдения (7) появились позже спектрального анализа (5), а он - позже фотографии самого Солнца (2)

Правильная последовательность: 41862573. Каждое верное сочетание оценивается. Общая сумма верных сочетаний делится нацело на 7 и выставляется в качестве итогового балла

Событие	Номер
Создание первого телескопа Галилео Галилеем – ответ Б	4
Открытие законов Кеплера	1
Создание классической механики Исааком Ньютоном	8
Открытие Урана Уильямом Гершелем	6
Создание первой фотографии Солнца Луи Физо и Леоном Фуко	2
Создание первой фотографии солнечного спектра Генри Дрейпером	5
Создание первого радиотелескопа Гроутом Ребером	7
Запуск космического телескопа имени Хаббла – ответ А	3

Задание 2 Горячий килограмм

Вам даны четыре тела разной степени нагретости:

- 1) Солнце;
- 2) Сириус (температура 9900 К, масса в две солнечной массы, радиус 1.7 солнечных);
- 3) Вольфрамовая нить (2900 К, плотность 18, толщина 50 мкм, длина многократно превышает толщину);
 - 4) Человек (310 К, 60 кг, площадь поверхности 1.7).

Каждое из этих тел излучает с каждой единицы своей площади поверхности некоторую мощность излучения Считая, что все они являются однородными абсолютно черными телами (АЧТ) соответствующей температуры, массы и размеров:

- **А.** Ответьте, какое из этих тел имеет наибольшую мощность излучения единицы площади поверхности? Почему?
- **Б.** Найдите, во сколько раз тело с наибольшей превосходит тело с наименьшей по этому параметру, т. е. отношение Ответ дайте с точностью до порядка величины (т. е. округлите до ближайшей степени десятки).
- **В.** Рассчитайте полную мощность излучения на единицу массы (в Вт/кг) всех четырех тел. Результаты расчетов приведите с точностью до порядка величины.

Решение А и Б:

- **А.** Более нагретое тело излучает больше энергии со своей поверхности. Самая высокая температура у Сириуса. Ответ **Сириус**
- **Б.** Согласно закону Стефана-Больцмана, мощность излучения единицы площади абсолютно черного тела (АЧТ) связана с его абсолютной температурой следующим соотношением:

$$j = \sigma T^4$$
,

где
$$\sigma = 5.67 \cdot 10^{-8} \frac{Bm}{M^2 \cdot K^4}$$
 - постоянная Стефана-Больцмана.

Поэтому для отношения наибольшего (Сириус) к наименьшему (человек) имеем:

$$\frac{j_{max}}{j_{min}} = \frac{\sigma(T_{\alpha CMa})^4}{\sigma(T_{yen})^4} = \left(\frac{T_{\alpha CMa}}{T_{yen}}\right)^4 = \left(\frac{9900}{310}\right)^4 \approx 1.040.145 \approx 106.$$

Заолотов сечение Решение В

ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ

для Солнца, Сириуса и человека:

В.•Обозначим как W •удельную на массу m мощность излучения полной площади поверхности S. Тогда

$$W = \frac{jS}{m} = \frac{\sigma T^4 S}{m}.$$

$$W_{_{\mathit{YEN}}} = \frac{5.67 \cdot 10^{-8} \ \frac{\mathit{Bm}}{\mathit{M}^2 \cdot \mathit{K}^4} \cdot (310 \cdot \mathit{K})^4 \cdot 1.7 \cdot \mathit{M}^2}{60 \cdot \mathit{\kappa} \mathit{e}} = 14.84 \cdot \frac{\mathit{Bm}}{\mathit{\kappa} \mathit{e}} \approx 10 \cdot \frac{\mathit{Bm}}{\mathit{\kappa} \mathit{e}}.$$

$$W_{\odot} = \frac{\sigma T_{\odot}^{4} 4\pi R_{\odot}^{2}}{M_{\odot}} = 1.96 \cdot 10^{-4} \ \frac{\rm Bm}{\rm \kappa z} \approx 10^{-4} \ \frac{\rm Bm}{\rm \kappa z}, \ \rm T_{\odot}^{-1} = 1.96 \cdot 10^{-4} \ \frac{\rm Bm}{\rm kz} \approx 10^{-4} \ \frac{\rm Bm}{\rm kz} = 1.96 \cdot 10^{-4} \ \frac{\rm Bm}{\rm kz} \approx 10^{-4} \ \frac{\rm Bm}{\rm kz} = 1.96 \cdot 10^{-4}$$

$$W_{\alpha CMa} = \frac{\sigma T_{\alpha CMa}{}^4 4\pi (1.7R_{\odot})^2}{2M_{\odot}} = 2.40 \cdot 10^{-3} \ \frac{\rm Bm}{\rm \kappa z} \approx 10^{-3} \ \frac{\rm Bm}{\rm \kappa z}.$$

Решение В – для вольфрамовой нити:

Для подсчета удельного энерговыделения нити будем считать её цилиндром диаметра d=50 мкм $=5 \cdot 10^{-5}$ м и неопределенной высоты H , которая для итогового расчета не потребуется, как мы увидим далее.

Площадь боковой грани такого цилиндра $S_{\mathfrak{q}}=\pi dH$ (площадью торцов

пренебрежем по условию), а масса
$$m_{_{\mathfrak{Q}}}=\rho V_{_{\mathfrak{Q}}}=\frac{\rho\pi d^2H}{4}$$
. Тогда

$$W_{\rm {\tiny HUMB}} = \frac{\sigma T_{\rm {\tiny U}}^{\ 4} S_{\rm {\tiny U}}}{m_{\rm {\tiny U}}} = \frac{4 \sigma T_{\rm {\tiny U}}^{\ 4}}{\rho \, d} = 4.46 \, \bullet \, 10^6 \, \, \frac{\rm Bm}{\rm \kappa z} \approx 10^6 \, \, \frac{\rm Bm}{\rm \kappa z} \, . \label{eq:WHUMB}$$

опотое оценивание:

Пункт	Критерий	Баллы		
A	Приведено обоснование вида: "Чем больше температура, тем больше излучательная способность единицы площади АЧТ"	1		
	или			
	Приведено обоснование в виде формулы Стефана-Больцмана			
	Приведен правильный ответ: Сириус	1		
Б	Приведен ответ: 10^6 , или 1 000 000, или 1 040 145	1		
	Ответ округлен до целой степени десятки (10^6 , или 1 000 000)	1		
В	Приведен расчет и округленный до целой степени десятки правильный ответ для удельного энерговыделения:			
	для человека ($10 \; rac{ m B_T}{ m \kappa r}$)	1		
	для Солнца ($10^{-4} \ rac{ ext{BT}}{ ext{K}\Gamma}$)	1		
	для Сириуса ($10^{-3} \ rac{ m BT}{ m K\Gamma}$)	1		
	для вольфрамовой нити (${f 10^6} \; {{ m BT} \over { m KF}}$)	1		
	Итого:	8		

Задание 3 Снова пролет

Сигнал от спутника, отправляющего сигнал на частоте 1575420 кГц, принимается на частоте 1575430 кГц спустя 66700 мкс в некотором пункте. В небе этого же пункта в момент приема сигнала видимая угловая скорость спутника равна 35'/мин. А. Из-за чего принимаемая в пункте частота сигнала больше отправленной? Б. Сосчитайте модуль лучевой скорости спутника относительно пункта, округлив её до точности 10 м/с и расстояние от спутника до пункта, округлив его до точности 10 км. В. Посчитайте модуль полной скорости спутника относительно пункта, округлив его до точности 100 м/с.Взаимодействием радиоволн с атмосферой Земли пренебрегите.

А. *Спутник, *вращаясь *по * орбите, *имеет * ненулевую * скорость * относительно * наблюдателя. * Часть * этой * скорости * направлена * вдоль * луча * зрения, * соединяющего * спутник * и * наблюдателя. *

Радиоволны, «как «электромагнитное» излучение, «имеют волновые» свойства «и обладает конечной скоростью, равной скорости света (в вакууме, так как взаимодействием с атмосферой мы пренебрегаем).

В случае движения приемника относительно излучателя, наблюдается эффект Доплера: при уменьшении расстояния от излучателя до приемника волновой фронт "сжимается", принимаемая частота излучения увеличивается, а длина волны - уменьшается. Это и приводит к увеличению принимаемой частоты $f = 1575430 \, \kappa \Gamma \mu$ относительно испускаемой $f_0 = 1575420 \, \kappa \Gamma \mu$.

золотое Решение:

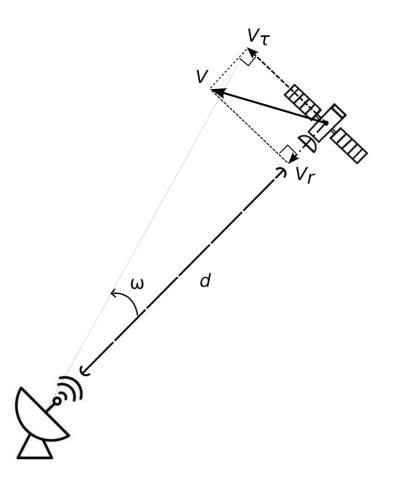
Б. Относительное изменение частоты равно отношению модуля лучевой скорости спутника v_r к скорости света $c = 299 \cdot 792 \cdot 458$ м/c:

$$\frac{f-f_0}{f_0} = \frac{v_r}{c},$$

$$v_r = c \frac{f - f_0}{f_0} = 1903 \cdot \text{M/c} \approx 1900 \cdot \text{M/c}.$$

Задержка сигнала t=66700 мкс $=6.67 \cdot 10^{-2}$ с объясняется конечной скоростью распространения радиоволн. Радиоволны движутся со скоростью света C, поэтому расстояние от пункта до наблюдателя

$$d = ct = 19.996.157 \text{ M} \approx 20.000 \text{ KM}.$$



Полная скорость есть сумма двух взаимно перпендикулярных компонент, по теореме Пифагора:

$$v = \sqrt{v_r^2 + v_\tau^2}.$$

Именно трансверсальная скорость v_{τ} оказывается связанной с видимой угловой скоростью спутника $\omega = 35$ /ишн = $1.697 \cdot 10^{-4}$ град/с и расстоянием d от спутника до пункта:

$$v_{\tau} = d\omega = 3394 \text{ m/c},$$

$$v = \sqrt{v_r^2 + v_{\tau}^2} = 3890 \text{ m/c} \approx 3900 \text{ m/c}.$$

ф ЗОЛОТОЕ ОЦЕНИВАНИЕ:

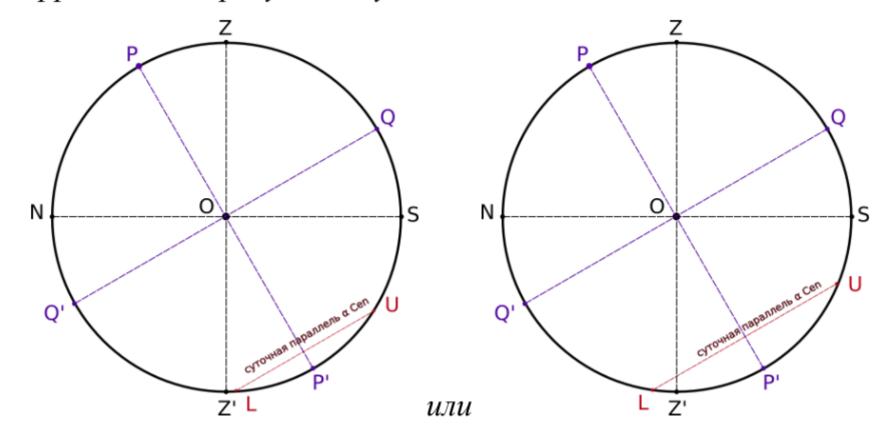
Пункт	Критерий	Баллы
A	Приведена причина изменения частоты: эффект Доплера	1
	Сказано, что расстояние между спутником и пунктом уменьшается или что	1
	лучевая скорость спутника направлена к наблюдателю, из-за чего приемная	
	частота больше, чем излучаемая	
Б	Приведена правильно рассчитанная и округленная лучевая скорость по формуле для эффекта Доплера: 1 900 м/с	1
	Приведено правильно расчитанное и округленное расстояние от спутника до пункта: 20 000 км	1
В	Приведено выражение, связывающее модуль полной скорости с лучевой и трансверсальной скоростью спутника, которое эквивалентно $v = \sqrt{v_r^2 + v_\tau^2}$.	1
	Приведено выражение, связывающее трансверсальную скорость с угловой скоростью и расстоянием, эквивалентное $v_{\tau} = d\omega$	2
	Приведено правильно расчитанное и округленное значение полной скорости: 3 900 м/с	1
	Итого:	8

Задание 4 Разбросало...

АСТРОНОМИЯ ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ

Вы находитесь в пункте с географической широтой $\varphi = +58^{\circ}06'$. Вам дана таблица из четверки звезд вместе с их экваториальными координатами:

Название звезды	α	δ
α Cen (Альфа Кентавра, Толиман)	14^h41^m	-60°57'
α UMa (Альфа Большой Медведицы, Дубхе)	$11^{h}05^{m}$	+61°37'
α Cap (Альфа Козерога, Альгеди)	$20^{h}19^{m}$	-12°28'
α Aur (Альфа Возничиего, Капелла)	$05^{h}19^{m}$	+46°01'


А. Какая из этих звезд находится всё время под горизонтом в этом пункте? Ответ проиллюстрируйте приблизительным изображением её суточной параллели в проекции на меридиан. На изображении не забудьте отметить все основные точки небесного меридиана.

- Б. Чему равна наибольшая высота каждой из этих звезд в этом пункте?
- **В.** Если местное звездное время $s = 13^h$, какие звезды находятся в западной части небесной сферы, а какие в восточной?

Условия корректности рисунка в пункте А:

Б. Наибольшую высоту звезды имеют в верхней кульминации. Для высоты верхней кульминации звезды имеем либо формулы для кульминации к югу и северу от зенита:

$$h_{\uparrow}=90^{\circ}-\varphi+\delta,\;\delta<\varphi\;(\kappa\; \mbox{югу})\;90^{\circ}+\varphi-\delta,\;\delta\geq\varphi\;(\kappa\; \mbox{северу})\;,$$
 либо общую формулу

$$h_{\uparrow} = 90^{\circ} - |\varphi - \delta|$$
.

Подставляем в неё значения склонений четырех звезд и получаем следующие значения наибольших высот:

Название	α	δ	$ \varphi - \delta $	h_{\uparrow}
звезды				
α Cen	$14^{h}41^{m}$	-60°57'	119°03'	-29°03'
αUMa	$11^{h}05^{m}$	+61°37'	03°31'	86°29'
а Сар	$20^{h}19^{m}$	-12°28'	70°34'	19°26'
α Aur	$05^{h}19^{m}$	+46°01'	12°05'	77°55'

В. Как и Солнце, светила движутся с суточным вращением Земли с востока на запад. Переход из восточной части небесной сферы в западную происходит во время верхней кульминации. Часовой угол светила во время верхней кульминации равен нулю.

Напомним, что часовой угол отсчитывается вдоль экватора от верхней точки Q. В северном полушарии точка Q находится над точкой юга S, и поэтому положительные часовые углы светила соответствуют западному (W) от меридиана положению , а отрицательные - восточному (E) от меридиана.

Используем выражение для связи часового угла светила с его прямым

восхождением и звездным временем:

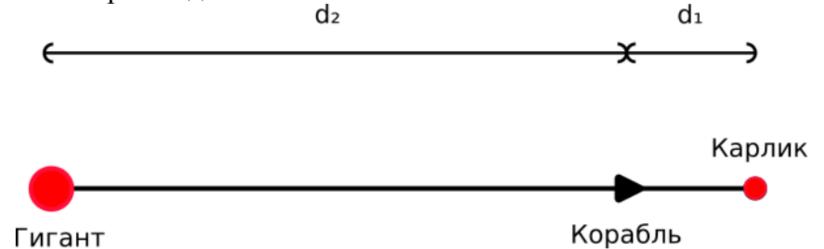
$$t = s - \alpha$$

Название	α	δ	h_{\uparrow}	t	E/W?
звезды					
α Cen	14^h41^m	-60°57'	-29°03'	$-1^{h}41^{m}$	E
αUMa	$11^{h}05^{m}$	+61°37'	86°29'	$1^{h}45^{m}$	W
а Сар	$20^{h}19^{m}$	-12°28'	19°26'	$-7^{h}19^{m}$	E
α Aur	$05^{h}19^{m}$	+46°01'	77°55'	$7^{h}41^{m}$	W

Оценивание:

Пункт	Критерий	Баллы
A	Приведен правильный ответ Альфа Центавра или Толиман	1
	Приведен корректный рисунок небесного меридиана	1
Б	В тексте работы есть связка между максимальной высотой светила и его верхней кульминацией, <i>или</i> приведена формула верхней кульминации в общем или частном виде.	1
	Правильно подсчитаны высоты верхних кульминаций всех четырех звезд и получены правильные высоты	1
В	В тексте работы есть связка между положением звезды относительно меридиана и её часовым углом <i>или</i> приведена формула связи между часовым углом и прямым восхождением одной и той же звезды	2
	Правильно определены звезды в восточной части	1
	Правильно определены звезды в западной части	1
	Итого:	8

Задание 5 Межзвездное пространство:


На отрезке между звездой-карликом и звездой-гигантом находится космический корабль, который видит обе звезды с одинаковой яркостью.

- **А.** Изобразите взаимное положение звезд и корабля на рисунке. К какой из звезд корабль находится ближе, чем к другой? Почему?
- **Б.** Что такое абсолютная звездная величина? Используя это определение, найдите расстояние от корабля до звезды-карлика в парсеках, если его абсолютная звездная величина $M_1=5^m$, а корабль видит обе звезды с яркостью, соответствующей пятой величине.
- **В.** Как в общем случае найти расстояние от наблюдателя до звезды, если известна её видимая и абсолютная величина? Найдите расстояние между звездами в парсеках, если абсолютная звездная величина звезды-гиганта $M_2 = 0^m$.

А. Если бы звезда-карлик и звезда-гигант находились на одинаковом расстоянии от корабля, тогда гигант выглядел бы ярче, так как звезда-карлик сама по себе имеет меньшую светимость, чем звезда-гигант, как минимум за счет размеров. Тогда корабль должен находиться ближе к звезде-карлику. Приблизительный вид рисунка, где приведены (необязательные для оценки этого этапа) обозначения d_1 - расстояние от корабля до карлика, d_2 - расстояние от корабля до гиганта:

Б. Абсолютная звездная величина звезды определяется как видимая звездная величина той же самой звезды, но помещенной на расстояние 10 парсек.

Так как видимая звездная величина звезды-карлика равна абсолютной, то расстояние до звезды-карлика $d_1 = 10 \ n\kappa$.

 ${f B.}$ Связь между абсолютной звездной величиной ${f M}$ и видимой звездной величиной ${f m}$ на расстоянии ${f d}$ от наблюдателя следующая:

$$d = 10^{\frac{m-M}{5}+1} \, \text{n} \kappa$$

Воспользовавшись этой формулой, можно найти расстояние от корабля до звезды-гиганта:

$$d_2 = 10^{\frac{5-0}{5}+1} = 100 \text{ nK}.$$

И затем найти суммарное расстояние: $d_1 + d_2 = 110 \ n\kappa$.

пантивых детей гол тем ТУНКТ	Критерий	Баллы
A	Нарисовано изображение, на котором есть все нижеперечисленное:на одной	1
	прямой отмечены корабль, звезда-карлик и звезда-гигант;корабль и звезды	
	подписаны; корабль находится между карликом и гигантом;корабль ближе к	
	карлику, чем к гиганту.	
	Приведено адекватное обоснование, почему корабль находится ближе к	1
	звезде-карлику, эквивалентное приведенному в решении (потому что	
	карлик меньше по светимости/по размерам/тусклее, чем гигант и т.п.)	
Б	Приведено правильное определение абсолютной звездной величины или	1
	эквивалентное ему: такая видимая звездная величина, которую звезда бы	
	имела, если бы находилась на расстоянии 10 пк от наблюдателя.	
	По определению илис помощью формулы связи видимой и абсолютной	1
	звездной величины сделан правильный вывод, что расстояние от корабля до	
	карлика $d_1 = 10 \text{ n}\kappa$.	
В	Приведена формула связи видимой и абсолютной звездной величины с	2
	расстоянием от звезды до наблюдателя unu эквивалентная ей: $d = 10^{\frac{m-M}{5}+1}$ пк	
	Подсчитано суммарное расстояние между звездами: 110 пк	2
	Итого:	8

Задание 6 Древняя карта:

Во времена зарождения первой цивилизации, 6 тысяч лет до нашей эры, была составлена карта звёздного неба. Небольшая часть копии этой карты приведена на рисунке ниже. Зная информацию о звёздах на рисунке, определите, что за созвездие на нём находится.

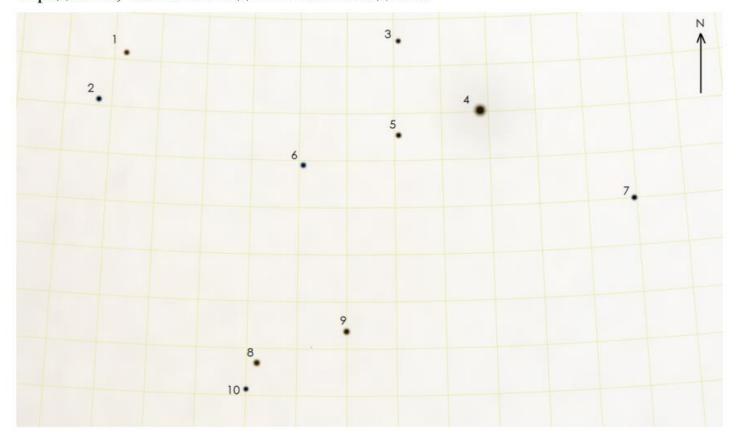


Рисунок 1. Копия карты звёздного неба. Шаг по горизонтали — 1°, шаг по вертикали — 5^m. Направление на север указано на рисунке.

Условия:

No	Звёздная величина	Класс	Собственное движение, 10-3 "/год	Позиционный угол, °
1	4.4	B2.5IV	2.0	249.8
2	4.4	K0II	2.4	305.0
3	5.0	A3V / F0V	61.5	10.1
4	0	A0V	349.7	35.1
5	4.3	F0V	34.5	45.9
6	4.2	M4II	7.2	286.4
7	4.3	K2III	44.4	337.8
8	3.3	B9III	3.3	301.3
9	3.5	B8.5I	4.2	166.3
10	4.9	K2.5III	8.1	32.9

Для решения задачи необходимо найти положение звёзд на современном небе. Для вычисления смещений звёзд необходима информация только из четвёртого и пятого столбца таблицы, второй и третий столбец не представляют никакого интереса.

Сначала решим задачу в общем виде:

- 1. Вычислим время, прошедшее с момента создания карты: 6000 лет до н.э. + 2000 лет = 8000 лет.
- 2. Вычислим смещение звёзды х:

$$x = \mu * t$$

где μ — собственное движение, t — время, прошедшее с момента создания карты.

3. Посчитаем смещение по осям. Поскольку позиционный угол θ отчитывается от направления на север против часовой стрелки, то

$$x_{\delta} = \mu \cos(\theta),$$

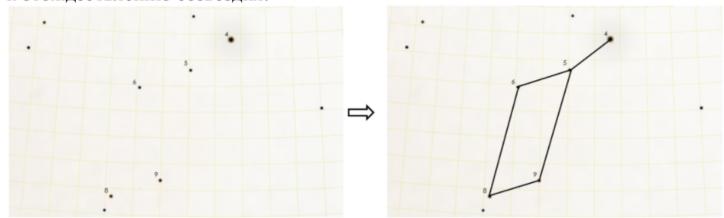
$$x_{\alpha} = \mu sin(\theta),$$

где x_δ и x_α — смещение по склонению и прямому восхождению соответственно.

3. Посчитаем смещение по осям. Поскольку позиционный угол θ отчитывается от направления на север против часовой стрелки, то

$$x_{\delta} = \mu cos(\theta),$$

$$x_{\alpha} = \mu sin(\theta),$$


где x_δ и x_α — смещение по склонению и прямому восхождению соответственно.

Изучив все звёзды в таблице, можно заметить, что заметное смещение будет только у звезды под номером 4. Собственное движение остальных звёзд довольно мало, их положение на звёздном небе изменится слабо. Поэтому для упрощения вычислений мы можем ограничится только расчётами для звёзды 4:

$$x_{\delta} = 38.28',$$

$$x_{\alpha} = 1.79^{m}$$
.

Рассмотрев современное положение звезды 4 на звёздном небе, можно перейти к отождествлению созвездия:

Это созвездие — Лира.

Оценивание:

№	Критерий	Балл
1	Верно определено время, прошедшее с создания карты	1
2	Использованы верные уравнения для вычисления смещения звезды на звёздном небе (явно или косвенно).	1
3	Использованы верные уравнения для вычисления смещения по осям координатной сетки (явно или косвенно).	1
4	Высказано предположение в отсутствии необходимости поиска нового положения на небе для всех звёзд.	1
5	Верно рассчитаны смещения по осям координатной сетки для всех звёзд или части звёзд, включая звезду 4 <i>или</i> верно рассчитаны смещения по осям координатной сетки для звезды 4.	2
6	Верно названо созвездие. В случае отсутствия рассуждений, критерий не считается выполненным.	2