Задания муниципального этапа Всероссийской олимпиады школьников по астрономии 2025/2026 учебного года

10 класс

Уважаемый участник олимпиады!

Время выполнения заданий тура – 180 минут.

Выполнение заданий целесообразно организовать следующим образом:

- внимательно прослушайте инструктаж члена жюри;
- не спеша, внимательно прочитайте задание;
- выполняйте задания в бланках ответа;
- если Вы допустили ошибку, то ее можно исправить простым зачеркиванием, указав рядом правильный ответ;
- после решения каждой задачи удостоверьтесь в правильности решения; исправьте обнаруженные при Вашей самостоятельной проверке ошибки.

Жюри не учитывает решения или части решений заданий, изложенные в черновике, даже при наличии ссылки на черновик в чистовом решении.

Если в решении допущена грубая астрономическая или физическая ошибка с абсурдным выводом (например, скорость больше скорости света, масса звезды, существенно меньшая реальной массы Земли и т.д.), все решение оценивается в 0 баллов, тогда как незначительная математическая ошибка снижает итоговую оценку не более чем на 2 балла.

Каждое задание оценивается в 8 баллов. Дробное количество баллов не допускается. За все задания возможно получить **48 баллов**.

Желаем удачи!

Решения заданий обязательно перенесите в бланки ответов. Решения в черновиках не оцениваются. В начале решения задания указывайте его номер.

1 задание: Кто старое помянет... (8 баллов)

В таблице вам предложены 8 событий в истории астрономии.

- А. Событие под каким номером произошло позже всех нижеперечисленных?
- **Б.** Событие под каким номером произошло раньше всех нижеперечисленных?
- **В.** Расположите номера всех событий в хронологическом порядке, от самого раннего до самого позднего, и приведите в виде строки из 8 чисел.

No	Событие				
1	Открытие законов Кеплера				
2	Создание первой фотографии Солнца Луи Физо и Леоном Фуко				
3	Запуск космического телескопа имени Хаббла				
4	Создание первого телескопа Галилео Галилеем				
5	Создание первой фотографии солнечного спектра Генри				
	Дрейпером				
6	Открытие Урана Уильямом Гершелем				
7	Создание первого радиотелескопа Гроутом Ребером				
8	Создание классической механики Исааком Ньютоном				

2 задание: Горячий килограмм (8 баллов)

Рассмотрим четыре тела:

1) Солнце; 2) Сириус (температура 9900 K, масса 2 солнечные массы, радиус 1.7 солнечных радиуса); 3) вольфрамовая нить (2900 K, плотность 18 $\frac{\Gamma}{\text{см}^3}$, диаметр 50 мкм, длина многократно превышает диаметр); 4) человек (310 K, 60 кг, площадь поверхности 1.7 м²).

Каждое из этих тел излучает с каждой единицы своей площади поверхности некоторую мощность. Считая, что все тела являются однородными абсолютно черными телами (АЧТ) соответствующей температуры, массы и размеров:

- **А.** определите, какое из этих тел имеет наибольшую мощность излучения с единичной площади поверхности? Почему?
- **Б.** Найдите отношение мощностей излучения для тел с наибольшей и наименьшей этими характеристиками. Ответ дайте с точностью до порядка величины (например, 0.9 округлить до 1, 0.2 до 0.1, 680 до 1000).
- **В.** Рассчитайте полную мощность излучения единичной массы (в Вт/кг) для каждого из четырех тел. Результаты расчетов приведите с точностью до порядка величины.

3 задание: Снова пролет (8 баллов)

Сигнал от спутника, отправляющего сигнал на частоте 1575420 кГц, принимается на частоте 1575430 кГц спустя 66700 мкс в некотором пункте. В небе этого же пункта в момент приема сигнала видимая угловая скорость спутника равна 35'/мин.

- А. Из-за чего принимаемая в пункте частота сигнала больше отправленной?
- **Б**. Сосчитайте модуль лучевой скорости спутника относительно пункта, округлив её до точности 10 м/c и расстояние от спутника до пункта, округлив его до точности 10 км.
- **В.** Посчитайте модуль полной скорости спутника относительно пункта, округлив его до точности 100 м/с.

Взаимодействием радиоволн с атмосферой Земли пренебрегите.

4 задание: Разбросало (8 баллов)

Вы находитесь в пункте с географической широтой $\varphi = +58^{\circ}06'$. Вам дана таблица из четверки звезд вместе с их экваториальными координатами:

Название звезды	α	δ
α Cen (Альфа Кентавра, Толиман)	14^h41^m	-60°57′
α UMa (Альфа Большой Медведицы, Дубхе)	$11^{h}05^{m}$	+61°37′
α Сар (Альфа Козерога, Альгеди)	$20^{h}19^{m}$	-12°28′
α Aur (Альфа Возничиего, Капелла)	05 ^h 19 ^m	+46°01′

А. Какая из этих звезд находится всё время под горизонтом в этом пункте? Ответ проиллюстрируйте приблизительным изображением её суточной параллели в проекции на меридиан. На изображении не забудьте отметить все основные точки небесного меридиана.

- Б. Чему равна наибольшая высота каждой из этих звезд в этом пункте?
- **В.** Если местное звездное время $s=13^h$, какие звезды находятся в западной части небесной сферы, а какие в восточной?

5 задание: Межзвездное пространство (8 баллов):

На отрезке между звездой-карликом и звездой-гигантом находится космический корабль, который видит обе звезды с одинаковой яркостью.

- **А.** Изобразите взаимное положение звезд и корабля на рисунке. К какой из звезд корабль находится ближе, чем к другой? Почему?
- **Б.** Что такое абсолютная звездная величина? Используя это определение, найдите расстояние от корабля до звезды-карлика в парсеках, если его абсолютная звездная величина $M_1=5^m$, а корабль видит обе звезды с яркостью, соответствующей пятой величине.
- **В.** Как в общем случае найти расстояние от наблюдателя до звезды, если известна её видимая и абсолютная величина? Найдите расстояние между звездами в парсеках, если абсолютная звездная величина звезды-гиганта $M_2 = 0^m$.

6 задание: Древняя карта (8 баллов)

Во времена зарождения первой цивилизации, 6 тысяч лет до нашей эры, была составлена карта звёздного неба. Небольшая часть копии этой карты приведена на рисунке ниже. Зная информацию о звёздах на рисунке, определите, что за созвездие на нём находится.

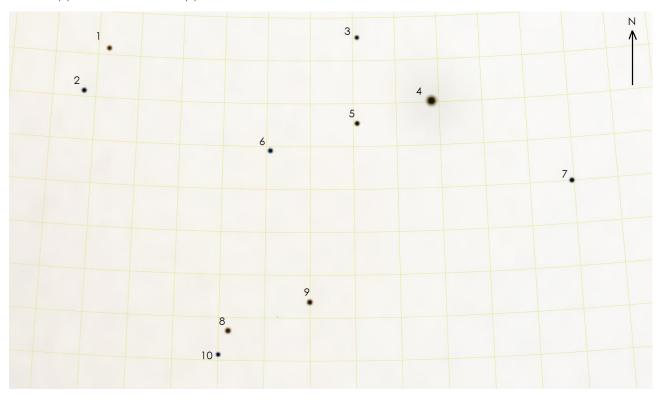


Рис. 1. Копия карты звёздного неба. Шаг по горизонтали — 1° , шаг по вертикали — $5^{\rm m}$. Направление на север указано на рисунке.

No	Звёздная	Класс	Собственное движение, 10-3	Позиционный
	величина		″/год	угол, °
1	4.4	B2.5IV	2.0	249.8
2	4.4	K0II	2.4	305.0
3	5.0	A3V /	61.5	10.1
		F0V		
4	0	A0V	349.7	35.1
5	4.3	F0V	34.5	45.9
6	4.2	M4II	7.2	286.4
7	4.3	K2III	44.4	337.8
8	3.3	B9III	3.3	301.3
9	3.5	B8.5I	4.2	166.3
1	4.9	K2.5III	8.1	32.9
0				

Перенесите решения заданий в бланки ответов!