Ключи и критерии оценивания к заданиям муниципального этапа Всероссийской олимпиады школьников по астрономии 2025/2026 учебного года

10 класс

1 задание: Кто старое помянет (8 баллов)

В таблице вам предложены 8 событий в истории астрономии.

- А. Событие под каким номером произошло позже всех нижеперечисленных?
- Б. Событие под каким номером произошло раньше всех нижеперечисленных?
- **В.** Расположите номера всех событий в хронологическом порядке, от самого раннего до самого позднего, и приведите в виде строки из 8 чисел.

№	Событие
1	Открытие законов Кеплера
2	Создание первой фотографии Солнца Луи Физо и Леоном Фуко
3	Запуск космического телескопа имени Хаббла
4	Создание первого телескопа Галилео Галилеем
5	Создание первой фотографии солнечного спектра Генри Дрейпером
6	Открытие Урана Уильямом Гершелем
7	Создание первого радиотелескопа Гроутом Ребером
8	Создание классической механики Исааком Ньютоном

Решение:

А. Запуск космического телескопа имени Хаббла, стоивший около 6 млрд долларов, компиляции большого числа технологий и коллаборации огромного числа ученых, инженеров и конструкторов, появился явно позже всех остальных событий

Б. Создание первого телескопа Галилео Галилеем и последующие телескопические наблюдения Луны, планет и их спутников - одно из ключевых событий XVII века, пошатнувших геоцентрическую систему мира, что господствовала столетиями. Астрономия невозможна без наблюдений, и Галилео впервые сделал эти наблюдения "вооруженными".

В. Расположим события 3 и 4 в строку из 8 ячеек:

4				3

Открытие Урана (6) не могло произойти до ньютоновской механики (8), а для её создания Ньютон опирался на труды Кеплера (1), который, в свою очередь, уже использовал некоторые телескопические наблюдения (4):

4	1	8	6		3

Радионаблюдения (7) появились позже спектрального анализа (5), а он - позже фотографии самого Солнца (2):

4	1	8	6	2	5	7	3

В таблице ниже в качестве справочной информации приведен год соответствующего события.

Событие	Год
Создание первого телескопа Галилео Галилеем	1609
Открытие законов Кеплера	1619
Создание классической механики Исааком Ньютоном	1687
Открытие Урана Уильямом Гершелем	1781
Создание первой фотографии Солнца Луи Физо и Леоном Фуко	1845
Создание первой фотографии солнечного спектра Генри Дрейпером	1873
Создание первого радиотелескопа Гроутом Ребером	1937
Запуск космического телескопа имени Хаббла	1990

Ответ:

- **A.** 3
- Б. 4
- **B.** 41862573

Оценивание

Пункт	Критерий	Баллы
A	Участник привел в решении правильный ответ	2
	(4, запуск космического телескопа)	
Б	Участник привел в решении правильный ответ	2
	(3, создание первого телескопа)	
В	Участник привел в решении правильный ответ (41862573)	4
	Итого:	8

Оценка пункта В в случае неверной последовательности: в строчке из 8 чисел, написанных участником, подсчитывается количество **N** присутствующих в строке позиций из таблицы ниже, Например, позиция 4..3 присутствует в строке, если в ней 4 находится **строго левее**, чем 3. (в 41235678 есть, в 31245678 нет).

Позиции						
43	13	87	62			
47	17	85	23			
45	15	82	27			
42	12	86	25			
46	16	63	53			
48	18	67	57			
41	83	65	73			

Количество баллов за третий критерий равно полученному количеству позиций **N**, деленному нацело (без остатка) на 7.

Пример: участник указал строку 14682753. В ней находятся 25 из 28 позиций (выделены жирным в таблице ниже). Значит, участник получает 25 // 7 = 3 балла за третий критерий. (и не получает двух баллов за второй, т. к. он написал Б. 1)

Позиции						
43	13	87	62			
47	17	85	23			
45	15	82	27			
42	12	86	25			
46	16	63	53			
48	18	67	57			
41	83	65	73			

2 задание: Горячий килограмм (8 баллов)

Рассмотрим четыре тела:

1) Солнце; 2) Сириус (температура 9900 K, масса 2 солнечные массы, радиус 1.7 солнечных радиуса); 3) вольфрамовая нить (2900 K, плотность $18 \frac{\Gamma}{\text{см}^3}$, диаметр 50 мкм, длина многократно превышает диаметр); 4) человек (310 K, 60 кг, площадь поверхности 1.7 м²).

Каждое из этих тел излучает с каждой единицы своей площади поверхности некоторую мощность. Считая, что все тела являются однородными абсолютно черными телами (АЧТ) соответствующей температуры, массы и размеров:

А. определите, какое из этих тел имеет наибольшую мощность излучения с единичной площади поверхности? Почему?

Б. Найдите отношение мощностей излучения для тел с наибольшей и наименьшей этими характеристиками. Ответ дайте с точностью до порядка величины (например, 0.9 округлить до 1, 0.2 до 0.1, 680 до 1000).

В. Рассчитайте полную мощность излучения единичной массы (в Вт/кг) для каждого из четырех тел. Результаты расчетов приведите с точностью до порядка величины.

Решение:

А. Более нагретое тело излучает больше энергии со своей поверхности. Согласно закону Стефана-Больцмана, мощность излучения j единицы площади абсолютно черного тела (АЧТ) связана с его абсолютной температурой T следующим соотношением:

$$j=\sigma T^4,$$

где $\sigma = 5.67 \cdot 10^{-8} \, \frac{\text{Вт}}{\text{м}^2 \cdot \text{K}^4}$ - постоянная Стефана-Больцмана.

Так как чем больше T, тем больше j, то искомое тело - это тело с наибольшей абсолютной температурой.

Из всех тел неизвестна только солнечная температура, но её можно посмотреть в справочных данных. Из них, температура Солнца $T_{\odot}=5800~\mathrm{K}$, что меньше температуры Сириуса, поэтому ответ: Сириус.

Замечание: Участник может не знать закон Стефана-Больцмана, но правильно заключить, что тело с наибольшей температурой имеет наибольшую мощность излучения поверхности, и получить полный балл за этот пункт.

Б. Из пункта а) заключаем, что j_{max} имеет Сириус, а j_{min} - человек (как тело с наименьшей температурой). Непосредственно применяя закон Стефана-Больцмана, получим, что искомое отношение равно отношению четвертых степеней температур:

$$\frac{j_{max}}{j_{min}} = \frac{\sigma(T_{\alpha CMa})^4}{\sigma(T_{\text{Ver}})^4} = \left(\frac{T_{\alpha CMa}}{T_{\text{Ver}}}\right)^4 = \left(\frac{9900}{310}\right)^4 \approx 1040145 \approx 10^6.$$

 ${f B.}$ Обозначим как W удельную на массу m мощность излучения полной площади поверхности S. Тогда

$$W = \frac{jS}{m} = \frac{\sigma T^4 S}{m}.$$

Порядок вычисления удельной мощности тел неважен. Проще всего начать с человека, поэтому применяем эту формулу непосредственно к его приведенным параметрам и получим:

$$W_{\text{чел}} = \frac{5.67 \cdot 10^{-8} \frac{\text{BT}}{\text{м}^2 \cdot \text{K}^4} \cdot (310 \text{ K})^4 \cdot 1.7 \text{ M}^2}{60 \text{ Kr}} = 14.84 \frac{\text{BT}}{\text{Kr}} \approx 10 \frac{\text{BT}}{\text{Kr}}.$$

В случае Солнца и Сириуса воспользуемся справочными данными о Солнце: $M_{\odot}=1.99\cdot 10^{30}~{\rm kr}, \quad R_{\odot}=6.955\cdot 10^8~{\rm m}, \quad T_{\odot}=5800~{\rm K,a}$ также формулой, связывающей радиус сферы с площадью её поверхности $S=4\pi R^2$:

$$W_{\odot} = \frac{\sigma T_{\odot}^{4} 4\pi R_{\odot}^{2}}{M_{\odot}} = 1.96 \cdot 10^{-4} \frac{BT}{K\Gamma} \approx 10^{-4} \frac{BT}{K\Gamma},$$

$$W_{\alpha CMa} = \frac{\sigma T_{\alpha CMa}^{4} 4\pi (1.7R_{\odot})^{2}}{2M_{\odot}} = 2.40 \cdot 10^{-3} \frac{BT}{K\Gamma} \approx 10^{-3} \frac{BT}{K\Gamma}.$$

Оказывается, килограмм звезд выделяет на порядки меньше энергии, чем человек! Конечно, при условии, что звезды однородны по плотности и температуре, что, конечно же, не соответствует реальности: недра звезд разогреты гораздо сильнее.

Для подсчета удельного энерговыделения нити будем считать её цилиндром диаметра d=50 мкм $=5\cdot 10^{-5}$ м и неопределенной высоты H, которая для итогового расчета не потребуется, как мы увидим далее.

Площадь боковой грани такого цилиндра $S_{\rm ц}=\pi dH$ (площадью торцов пренебрежем по условию), а масса $m_{\rm ц}=\rho V_{\rm ц}=rac{
ho\pi d^2 H}{4}.$ Тогда

$$W_{\text{\tiny HMTb}} = \frac{\sigma T_{\text{\tiny L}}^4 S_{\text{\tiny L}}}{m_{\text{\tiny H}}} = \frac{4\sigma T_{\text{\tiny L}}^4}{\rho d} = 4.46 \cdot 10^6 \ \frac{\text{BT}}{\text{K}\Gamma} \approx 10^6 \ \frac{\text{BT}}{\text{K}\Gamma}.$$

Из всех тел вольфрамовая нить и в реальности наиболее однородная, благодаря чему она имеет огромную излучательную мощность на единицу массы.

Ответ:

- А. Сириус;
- **Б.** 10^6 ;
- **В.** Солнце 10^{-4} , Сириус 10^{-3} , нить 10^{6} , человек 10.

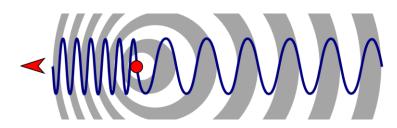
Оценивание

Пункт	Критерий	Баллы
A	Приведено обоснование вида: "Чем больше температура, тем	1
	больше излучательная способность единицы площади АЧТ"	
	или Приведено обоснование в виде формулы Стефана-Больцмана	
	Приведен правильный ответ: Сириус	1
Б	Приведен ответ: 10 ⁶ , или 1 000 000, или 1 040 145	1
	Ответ округлен до целой степени десятки $(10^6, или 1\ 000\ 000)$	1
В	Приведен расчет и округленный до целой степени десятки пра	вильный
	ответ для удельного энерговыделения:	
	для человека ($10 \frac{BT}{K\Gamma}$)	1

	Итого:	8
для вольфрамовой нити ($10^6 \frac{BT}{\kappa r}$)		1
для Сириуса $(10^{-3} \frac{BT}{KF})$		1
для Солнца ($10^{-4} \frac{BT}{\kappa r}$)		1

3 задание: Снова пролет (8 баллов)

Сигнал от спутника, отправляющего сигнал на частоте 1575420 кГц, принимается на частоте 1575430 кГц спустя 66700 мкс в некотором пункте. В небе этого же пункта в момент приема сигнала видимая угловая скорость спутника равна 35'/мин.


- А. Из-за чего принимаемая в пункте частота сигнала больше отправленной?
- **Б**. Сосчитайте модуль лучевой скорости спутника относительно пункта, округлив её до точности 10 м/с и расстояние от спутника до пункта, округлив его до точности 10 км.
- **В.** Посчитайте модуль полной скорости спутника относительно пункта, округлив его до точности 100 м/с.

Взаимодействием радиоволн с атмосферой Земли пренебрегите.

Решение:

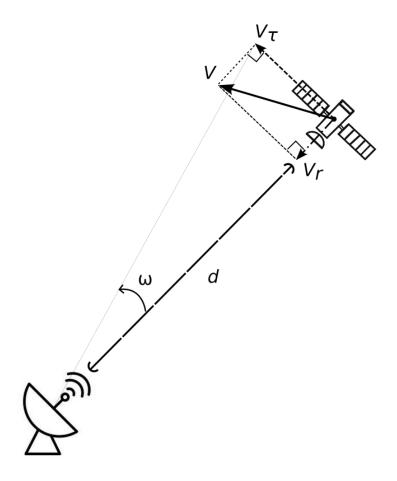
А. Спутник, вращаясь по орбите, имеет ненулевую скорость относительно наблюдателя. Часть этой скорости направлена вдоль луча зрения, соединяющего спутник и наблюдателя.

Радиоволны, как электромагнитное излучение, имеют волновые свойства и обладает конечной скоростью, равной скорости света (в вакууме, так как взаимодействием с атмосферой мы пренебрегаем).

В случае движения приемника относительно излучателя, наблюдается эффект Доплера: при уменьшении расстояния от излучателя до приемника волновой фронт "сжимается", принимаемая частота излучения увеличивается, а длина волны - уменьшается. Это и приводит к увеличению принимаемой частоты f = 1575430 кГц относительно испускаемой $f_0 = 1575420$ кГц.

Б. Относительное изменение частоты равно отношению модуля лучевой скорости спутника v_r к скорости света $c=299\,792\,458\,\mathrm{m}/c$:

$$\frac{f - f_0}{f_0} = \frac{v_r}{c},$$


Отсюда найдем модуль лучевой скорости:

$$v_r = c \frac{f - f_0}{f_0} = 1903 \text{ m/c} \approx 1900 \text{ m/c}.$$

Задержка сигнала $t = 66700 \,\mathrm{mkc} = 6.67 \cdot 10^{-2} \,\mathrm{c}$ объясняется конечной скоростью распространения радиоволн. Радиоволны движутся со скоростью света c, поэтому расстояние от пункта до наблюдателя

$$d = ct = 19 996 157$$
 м $\approx 20 000$ км.

В. Полная скорость спутника относительно пункта помимо лучевой компоненты v_r включает в себя также и трансверсальную компоненту v_τ , перпендикулярную лучу зрения (см. рисунок):

Полная скорость есть сумма двух взаимно перпендикулярных компонент, по теореме Пифагора:

$$v = \sqrt{v_r^2 + v_\tau^2}.$$

Именно трансверсальная скорость v_{τ} оказывается связанной с видимой угловой скоростью спутника $\omega=35$ '/мин $=1.697\cdot 10^{-4}$ рад/cи расстоянием d от спутника до пункта:

$$v_{\tau} = d\omega = 3394 \; \text{м/c},$$

$$v = \sqrt{{v_r}^2 + {v_{\tau}}^2} = 3890 \; \text{м/c} \; \approx \; 3900 \; \text{м/c}.$$

Такая скорость и высота орбиты приблизительно соответствует спутникам системы GPS.

Ответ:

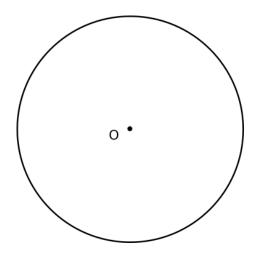
- А. Из-за сближения спутника с пунктом вследствие эффекта Доплера
- **Б.** 1900 м/с и 20 000 км;
- **B.** 3900 m/c.

Оценивание

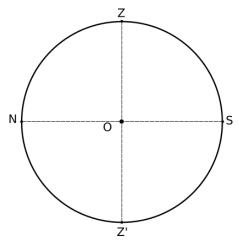
Пункт	Критерий	Баллы
A	Приведена причина изменения частоты: эффект Доплера	1
	Сказано, что расстояние между спутником и пунктом уменьшается <i>или</i> что лучевая скорость спутника направлена к наблюдателю, из-за чего приемная частота больше, чем излучаемая	1
Б	Приведена правильно рассчитанная и округленная лучевая скорость по формуле для эффекта Доплера: 1 900 м/с	1
	Приведено правильно расчитанное и округленное расстояние от спутника до пункта: 20 000 км	1
В	Приведено выражение, связывающее модуль полной скорости с лучевой и трансверсальной скоростью спутника, которое эквивалентно $v = \sqrt{v_r^2 + v_\tau^2}$.	1
	Приведено выражение, связывающее трансверсальную скорость с угловой скоростью и расстоянием, эквивалентное $v_{ au} = d\omega$	2
	Приведено правильно рассчитанное и округленное значение полной скорости: 3 900 м/с	1
	Итого:	8

4 задание: Разбросало (8 баллов)

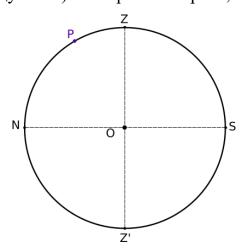
Вы находитесь в пункте с географической широтой $\varphi = +58^{\circ}06'$. Вам дана таблица из четверки звезд вместе с их экваториальными координатами:


Название звезды	α	δ
α Cen (Альфа Кентавра, Толиман)	$14^{h}41^{m}$	-60°57′
α UMa (Альфа Большой Медведицы, Дубхе)	$11^{h}05^{m}$	+61°37′
α Сар (Альфа Козерога, Альгеди)	$20^{h}19^{m}$	-12°28′
α Aur (Альфа Возничиего, Капелла)	$05^{h}19^{m}$	+46°01′

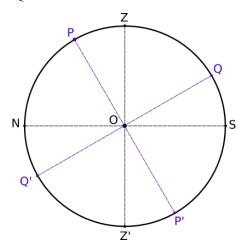
А. Какая из этих звезд находится всё время под горизонтом в этом пункте? Ответ проиллюстрируйте приблизительным изображением её суточной параллели в проекции на меридиан. На изображении не забудьте отметить все основные точки небесного меридиана.


- Б. Чему равна наибольшая высота каждой из этих звезд в этом пункте?
- **В.** Если местное звездное время $s=13^h$, какие звезды находятся в западной части небесной сферы, а какие в восточной?

Решение:

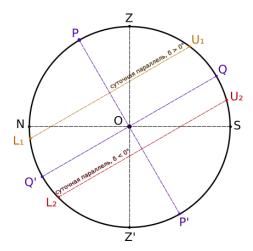

А. Изобразим небесный меридиан с основными точками для пункта с данной широтой. Для этого изобразим окружность произвольного радиуса с центром в точке О, где находится наблюдатель.

После этого отметим отвесную линию "зенит-надир" ZZ' в качестве вертикального диаметра этой окружности, и перпендикулярно ZZ' отметим полуденную линию NS. Точку севера N отметим слева, точку юга S справа.



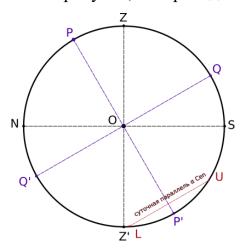
Высота северного полюса мира P равна широте места наблюдения, поэтому точку P изобразим таким образом, чтобы она лежала в верхней части окружности, а угол NOP (или аналогично дуга NP) была равна широте, т. е. приблизительно 60°:

Южный полюс мира P' есть диаметрально противоположная точка для P. Проекцию экватора QQ' изобразим, проведя перпендикулярный к PP' диаметр


окружности, при этом верхняя точка экватора Q должна быть в верхней части окружности, а нижняя точка Q' - в нижней:

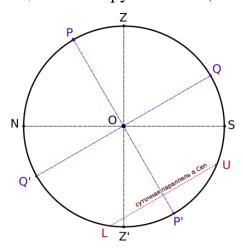
Любая суточная параллель будет иметь вид хорды, параллельной QQ' (или перпендикулярной PP', что эквивалентно). Если U - верхняя точка суточной параллели, а L - нижняя, то дуга QU = дуге Q'L = δ .

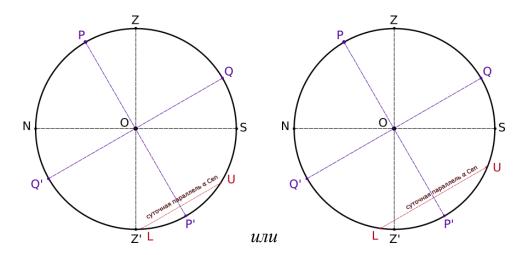
При этом положение суточной параллели зависит от склонения звезды: $\delta=0^\circ$ соответствует положению экватора QQ', у звезды с $\delta>0^\circ$ суточная параллель будет находится в полуокружности, содержащей P, у звезды с $\delta<0^\circ$ - в полуокружности, содержащей P'.


Если U - верхняя точка суточной параллели, а L - нижняя, то дуга QU = дуге Q'L = δ .

Все время под горизонтом находится такая звезда, склонение которой меньше, чем склонение звезды, чья верхняя кульминация проходит через точку юга S. Для такой звезды из построения имеем:

$$\delta_S = -90^{\circ} + \varphi = -31^{\circ}54'.$$


Подходит только одна звезда - Толиман. Ниже изображен приблизительный вид её суточной параллели и итогового рисунка, который должен привести участник.


Замечание: вся суточная параллель находится ещё и в южной части небесной сферы (справа от ZZ'), так как кульминация Толимана снизу происходит к югу от зенита:

$$\delta_{Z'} = -\varphi = -58^{\circ}06' > \delta_{\alpha \ Cen}$$

Однако, приблизительный рисунок участника этого не требует и может быть нарисован с нижней кульминацией к северу от зенита, например, вот так:

Условия корректности рисунка в пункте А:

- Присутствует отвесная линия "зенит-надир" ZZ', присутствует полуденная линия горизонта "север-юг" NS, ZZ' и NS перпендикулярны друг другу и проходят через центр окружности;
- Присутствует ось мира PP', присутствует проекция экватора QQ', PP' и QQ' перпендикулярны друг другу и проходят через центр окружности;
- Северный полюс мира P находится в верхнем полукруге над точкой севера N, дуга NP приблизительно равна широте места (около 60 градусов);
- Верхняя точка экватора Q находится в верхнем полукруге над точкой юга S;
- Проекция суточной параллели Толимана полностью находится в нижнем полукруге, перпендикулярна оси мира PP', параллельна экватору QQ' и не проходит через центр окружности.

Допускается отличное от приведенного выше обозначение основных точек NPZQSP'Z'Q' в случае полной геометрической эквивалентности с точностью до замены обозначений одному из рисунков выше. Точки верхней U и нижней кульминации L обозначать не требуется.

Б. Наибольшую высоту звезды имеют в верхней кульминации. Для высоты верхней кульминации звезды имеем либо формулы для кульминации к югу и северу от зенита:

$$h_{\uparrow}=\{90^{\circ}-\varphi+\delta, \qquad \delta<\varphi \ (\text{к югу})\ 90^{\circ}+\varphi-\delta, \qquad \delta\geq\varphi \ (\text{к северу})\,,$$
либо общую формулу

$$h_{\uparrow} = 90^{\circ} - |\varphi - \delta|.$$

Подставляем в неё значения склонений четырех звезд и получаем следующие значения наибольших высот:

Название	α	δ	$ \varphi - \delta $	h_{\uparrow}
звезды				
α Cen	14^h41^m	-60°57′	119°03′	-29°03′
а ИМа	$11^{h}05^{m}$	+61°37′	03°31′	86°29′
а Сар	$20^{h}19^{m}$	-12°28′	70°34′	19°26′
α Aur	$05^{h}19^{m}$	+46°01′	12°05′	77°55′

В. Как и Солнце, светила движутся с суточным вращением Земли с востока на запад. Переход из восточной части небесной сферы в западную происходит во время верхней кульминации. Часовой угол светила во время верхней кульминации равен нулю.

Напомним, что часовой угол отсчитывается вдоль экватора от верхней точки Q. В северном полушарии точка Q находится над точкой юга S, и поэтому положительные часовые углы $(0^h < t < 12^h)$ светила соответствуют западному (W) от меридиана положению, а отрицательные $(-12^h < t < 0^h)$ - восточному (E) от меридиана.

Используем выражение для связи часового угла светила с его прямым восхождением и звездным временем:

$$t = s - \alpha$$

Название	α	δ	h_{\uparrow}	t	E/W?
звезды					
α Cen	14^h41^m	-60°57′	-29°03′	$-1^{h}41^{m}$	E
а ИМа	$11^{h}05^{m}$	+61°37′	86°29′	$1^{h}45^{m}$	W
а Сар	20 ^h 19 ^m	-12°28′	19°26′	$-7^{h}19^{m}$	E
α Aur	05 ^h 19 ^m	+46°01′	77°55′	7 ^h 41 ^m	W

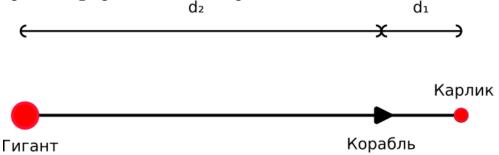
Ответ:

- **А.** α *Cen*, Толиман,
- **Б.** -29°03′, 86°29′, 19°26′, 77°55′
- **В.** α *Cen* и α *Cap* в восточной части, α *UMa* и α *Aur* в западной.

Оценивание

Пункт	Критерий	Баллы
A	Приведен правильный ответ <i>α Cen</i> , или Толиман	1
	Приведен корректный рисунок небесного меридиана (смотри условия корректного рисунка ниже)	1
Б	В тексте работы есть связка между максимальной высотой светила и его верхней кульминацией, <i>или</i> приведена формула верхней кульминации в общем или частном виде.	1
	Правильно подсчитаны высоты верхних кульминаций всех четырех звезд и получены высоты: –29°03′, 86°29′, 19°26′, 77°55′ для α Cen, α UMa, α Cap и α Aur, соответственно.	1
В	В тексте работы есть связка между положением звезды относительно меридиана и её часовым углом <i>или</i> приведена	2

одной и той же звезды Правильно определены звезды в восточной части: α Cen μ 1 α Cap Правильно определены звезды в западной части: α UMa μ 1 α Aur
α СарПравильно определены звезды в западной части: α UMa и 1


5 задание: Межзвездное пространство (8 баллов):

На отрезке между звездой-карликом и звездой-гигантом находится космический корабль, который видит обе звезды с одинаковой яркостью.

- **А.** Изобразите взаимное положение звезд и корабля на рисунке. К какой из звезд корабль находится ближе, чем к другой? Почему?
- **Б.** Что такое абсолютная звездная величина? Используя это определение, найдите расстояние от корабля до звезды-карлика в парсеках, если его абсолютная звездная величина $M_1=5^m$, а корабль видит обе звезды с яркостью, соответствующей пятой величине.
- **В.** Как в общем случае найти расстояние от наблюдателя до звезды, если известна её видимая и абсолютная величина? Найдите расстояние между звездами в парсеках, если абсолютная звездная величина звезды-гиганта $M_2 = 0^m$.

Решение:

А. Если бы звезда-карлик и звезда-гигант находились на одинаковом расстоянии от корабля, тогда гигант выглядел бы ярче, так как звезда-карлик сама по себе имеет меньшую светимость, чем звезда-гигант, как минимум за счет размеров. Тогда корабль должен находиться ближе к звезде-карлику. Приблизительный вид рисунка, где приведены (необязательные для оценки этого этапа) обозначения d_1 - расстояние от корабля до карлика, d_2 - расстояние от корабля до гиганта:

Б. Абсолютная звездная величина звезды определяется как видимая звездная величина той же самой звезды, но помещенной на расстояние 10 парсек.

Так как видимая звездная величина звезды-карлика равна абсолютной, то расстояние до звезды-карлика $d_1=10$ пк.

В. Связь между абсолютной звездной величиной M и видимой звездной величиной m на расстоянии d от наблюдателя следующая:

$$d = 10^{\frac{m-M}{5}+1} \, \text{nk}$$

Воспользовавшись этой формулой, можно найти расстояние от корабля до звезды-гиганта:

$$d_2 = 10^{\frac{5-0}{5}+1} = 100$$
 пк.

И затем найти суммарное расстояние: $d_1 + d_2 = 110$ пк.

Ответ:

- А. Корабль ближе к звезде-карлику;
- **Б.** 10 пк;
- В. 110 пк.

Оценивание

Пункт	Критерий	Баллы
A	Нарисовано изображение, на котором есть все нижеперечисленное:	1
	 на одной прямой отмечены корабль, звезда-карлик и звезда-гигант; корабль и звезды подписаны; корабль находится между карликом и гигантом; 	
	• корабль ближе к карлику, чем к гиганту. Приведено адекватное обоснование, почему корабль находится ближе к звезде-карлику, эквивалентное приведенному в решении (потому что карлик меньше по светимости/по	1

	размерам/тусклее, чем гигант и т.п.)	
Б	Приведено правильное определение абсолютной звездной величины или эквивалентное ему: такая видимая звездная величина, которую звезда бы имела, если бы находилась на расстоянии 10 пк от наблюдателя.	1
	По определению unu с помощью формулы связи видимой и абсолютной звездной величины сделан правильный вывод, что расстояние от корабля до карлика $d_1=10$ пк.	1
В	Приведена формула связи видимой и абсолютной звездной величины с расстоянием от звезды до наблюдателя unu эквивалентная ей: $d=10^{\frac{m-M}{5}+1}$ пк	2
	Подсчитано суммарное расстояние между звездами: 110 пк	2
	Итого:	8

6 задание: Древняя карта (8 баллов)

Во времена зарождения первой цивилизации, 6 тысяч лет до нашей эры, была составлена карта звёздного неба. Небольшая часть копии этой карты приведена на рисунке ниже. Зная информацию о звёздах на рисунке, определите, что за созвездие на нём находится.

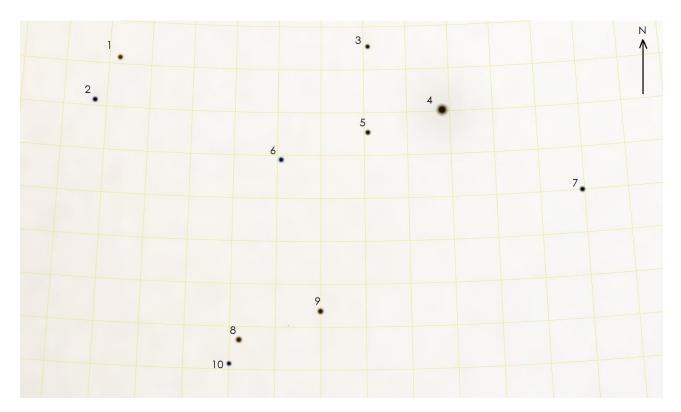


Рисунок 1. Копия карты звёздного неба. Шаг по горизонтали — 1°, шаг по вертикали — 5^т. Направление на север указано на рисунке.

	Звёздная	Класс	Собственное движение, 10-3	Позиционный
	величина		′′/год	угол, °
1	4.4	B2.5IV	2.0	249.8
2	4.4	K0II	2.4	305.0
3	5.0	A3V /	61.5	10.1
		F0V		
4	0	A0V	349.7	35.1
5	4.3	F0V	34.5	45.9
6	4.2	M4II	7.2	286.4
7	4.3	K2III	44.4	337.8
8	3.3	B9III	3.3	301.3
9	3.5	B8.5I	4.2	166.3
1	4.9	K2.5III	8.1	32.9
0				

Решение:

Для решения задачи необходимо найти положение звёзд на современном небе. Для вычисления смещений звёзд необходима информация только из четвёртого и пятого столбца таблицы, второй и третий столбец не представляют никакого интереса.

Сначала решим задачу в общем виде:

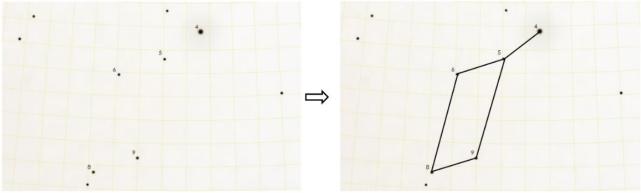
- 1. Вычислим время, прошедшее с момента создания карты: 6000 лет до н.э. +2000 лет =8000 лет.
- 2. Вычислим смещение звёзды х:

$$x^{\circ} = \mu * t$$
,

где μ — собственное движение, t — время, прошедшее c момента создания карты. 3. Посчитаем смещение по осям. Поскольку позиционный угол θ отчитывается от направления на север против часовой стрелки, то

$$x_{\delta} = \mu \cos(\theta),$$

$$x_{\alpha} = \mu sin(\theta),$$


где x_{δ} и x_{α} — смещение по склонению и прямому восхождению соответственно.

Изучив все звёзды в таблице, можно заметить, что заметное смещение будет только у звезды под номером 4. Собственное движение остальных звёзд довольно мало, их положение на звёздном небе почти не изменится. Поэтому для упрощения вычислений мы можем ограничится только расчётами для звёзды 4:

$$x_{\delta} = 38.28',$$

$$x_{\alpha} = 1.79^{m}$$
.

Рассмотрев современное положение звезды 4 на звёздном небе, можно перейти к отождествлению созвездия:

Это созвездие — Лира.

Оценивание:

№	Критерий	Балл
1	Верно определено время, прошедшее с создания карты – около	1
	8000 лет	
2	Использованы верные уравнения для вычисления смещения звезды	1
	на звёздном небе (явно или косвенно).	
3	Использованы верные уравнения для вычисления смещения по	1
	осям координатной сетки (явно или косвенно).	
4	Высказано предположение в отсутствии необходимости поиска	1
	нового положения на небе для всех звёзд.	
5	Верно рассчитаны смещения по осям координатной сетки для всех	2
	звёзд или части звёзд, включая звезду 4.	
	или	
	Верно рассчитаны смещения по осям координатной сетки для	
	звезды 4.	
6	Верно названо созвездие. В случае отсутствия рассуждений,	2
	критерий не считается выполненным.	
гИ	ОГОГО	8