ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ТРУДУ (ТЕХНОЛОГИИ) ШКОЛЬНЫЙ ЭТАП 2025/2026 учебный год

Вид практики: «Общие практические работы»

Практическая работа по Промышленному дизайну

9 класс

СВЕТОДИОДНАЯ ЛАМПА

Задание: разработать дизайн и конструкцию светодиодной лампы с универсальным креплением. Выполнить чертежи объекта, отражающие суть проекта, показать технологичность, продуманность элементов.

Объект: «Светодиодная лампа». Необходимо создать объект, отличающийся от образца (см. рис. 1) как по дизайну, так и по цвету.

Рис.1. «Светодиодная лампа»

Габаритные размеры изделия (Д×Ш×В): не более 500×20×50 мм.

Технические требования:

- Самостоятельно продумайте конструкцию светодиодной лампы и способа ее крепления к поверхности.
- Не усложняйте излишне форму. Допускается деление на 2-5 деталей.

Дизайн:

- Допускается использование скруглений и сложных изгибов формы.
- Рекомендуется использовать не больше 3 цветов в одном цветовом решении.
- Приветствуется размещение простого контррельефа (углубленного рельефа) и/или надписей.
- При применении графики на цветовом решении изделия применяйте или мягкие и плавные изгибы, или жесткие, прямые и рубленные линии.

Программы для моделирования:

- КОМПАС-3D.
- Blender.

Порядок выполнения работы:

- 1. Ознакомьтесь с заданием.
- 2. На листе бумаги формата A4 в соответствии с ГОСТом разработайте эскиз (или технический рисунок) изделия (или деталей по отдельности) для последующего моделирования с указанием габаритных размеров, подпишите лист своим персональным номером участника олимпиады.
- 3. Создайте личную папку в указанном организаторами месте (на рабочем столе компьютера или сетевом диске) с названием по шаблону:

Шаблон	Пример	
Zadanie_номер участника_rosolimp	Zadanie_v12.345.678_rosolimp	

- 4. Выполните электронные 3D-модели деталей изделия с использованием программы КОМПАС-3D, выполните модель сборки.
- 5. Сохраните в личную папку файл проекта в формате **среды разра- ботки** (например, в КОМПАС-3D формат детали **m3d**, формат сборки **a3d**, формат чертежа **cdw**). В многодетальном изделии в названия файловдеталей и файла-сборки следует добавлять соответствующее название:

Шаблон	Пример	
detal_номер участника_rosolimp.тип	detal1_v12.345.678_rosolimp.cdw detal2_v12.345.678_rosolimp.cdw detal1_v12.345.678_rosolimp.m3d	

detal2_v12.345.678_rosolimp.m3d sborka_v12.345.678_rosolimp.a3d

- 6. Подготовьте в КОМПАС-3D чертежи готового изделия в необходимых видах с выполнением местного или полного сечения, или разреза (на выбор участника). На чертежах проставить необходимые размеры, выносные и вспомогательные (осевые) линии согласно ГОСТу. Штамп заполните в соответствии со спецификацией по ГОСТу.
- 7. Чертежи сохраните, следуя шаблону, например, **de-tal1_v12.345.678_rosolimp.cdw** в формате КОМПАС-3D и в формате **.pdf**.
- 8. В КОМПАС-3D или Blender* создайте и сохраните рендеринг (визуализацию) изделия в формате PNG или JPEG на однотонном фоне, следуя тому же шаблону, например, **detall_v12.345.678_rosolimp.jpg**.
- *ПРИМЕЧАНИЕ: в силу того, что в КОМПАС-3D v.22 убрали возможность выполнять рендеринг модели (Artisan Rendering), рендеринг можно произвести в программе Blender.
- 9. В КОМПАС-3D создайте анимацию сборки изделия и сохраните ее, следуя тому же шаблону, например, **sborka_v12.345.678_rosolimp.xml**.
- 10. Продемонстрируйте и сдайте организаторам все созданные материалы.
 - 11. Уберите рабочее место.

Перечень сдаваемой отчетности:

- 1. Эскиз/эскизы, выполненный согласно ГОСТ на бумажном листе.
- 2. Папку с файлами (на сетевом диске или на локальном компьютере) 3D-модели.
- 3. Электронные чертежи в формате .pdf.
- 4. Файл рендеринга в формате PNG или JPEG.
- 5. Файл анимации в формате XML.

Время выполнения работы 90 минут.

Успешной работы!

Критерии оценивания практической работы по Промышленному дизайну

Таблица

3.0	TA	Таолица		
N₂	Критерии оценивания	Макс.	Балл	
		балл	участ-	
			ника	
1	Соответствие теме задания, функциональность	3		
1.1	разработанное изделие соответствует теме задания	1		
1.2	предложен метод крепления лампы к различным поверхностям	1		
1.3	предложенная модель имеет систему гибкой настройки угла наклона лампы	1		
2	Требования к чертежу, эскизу	12		
2.1	эскизы выполнены согласно ГОСТ на бумаге	1		
2.2	на эскизах изображены все конструктивные детали	1		
2.3	выдержаны пропорции между деталями	1		
2.4	эскизы выполнены с применением штриховки и/или цвета	1		
2.5	на чертежах представлены основные виды изделия согласно	1		
2.5	ГОСТ, виды изделия на листе размещены корректно	1		
2.6	все линии построения, выносные линии и размеры выпол-	1		
2.0	нены, согласно ГОСТ	1		
2.7	имеется местный или полный разрез/сечение, выявляющий	1		
	внутреннее строение изделия, выполненный согласно ГОСТ			
2.8	на чертеже размещена изометрическая проекция изделия	1		
	согласно ГОСТ			
2.9	выполнена спецификация согласно ГОСТ	1		
2.10	заполнен штамп чертежного листа	1		
2.11	чертежи сохранены в формате КОМПАС-3D и .pdf	1		
2.12	выполнено текстовое пояснение или руководство по сборке	1		
3	Требования к модели	8		
3.1	габариты изделия выдержаны	1		
3.2	изделие выполнено из 2 и более деталей	1		
3.3	предложен отличный от образца способ фиксации лампы на	2		
	поверхностях			
	предложен отличный от образца способ изменения угла	2		
	наклона лампы			
3.4	предложен способ управления освещением лампы	2		
4	Требования к изображениям (рендерингу)	6		
4.1	цвет поверхности изделия отличается от образца	1		
4.2	поверхности изделия покрыты графикой или контррелье-	1		
	фом			
4.3	к изделию применена текстура предполагаемого материала	1		

Продолжение таблицы

	продолжение пасящая				
№	Критерии оценивания	Макс. балл	Балл участ- ника		
4	Требования к изображениям (рендерингу)				
4.4	к изделию применен рельеф предполагаемого материала	1			
4.5	кадр выстроен так, что максимально передает натураль-	1			
	ность примененных текстур и рельефа				
4.6	изображения сохранены в .jpg или .png с разрешением не	1			
	менее 300 точек на дюйм				
5	Требования к анимации	6			
5.1	в анимации продемонстрировано динамическое разнесение	1			
	составных деталей изделия так называемая взрыв-схема				
5.2	в анимации продемонстрировано динамическое разнесение	1			
	всех деталей, составляющих изделие кроме базового, отно-				
	сительно которого происходит разнесение				
5.3	в анимации динамическое разнесение деталей, составляю-	1			
	щих изделие происходит согласно логике: последовательно				
	или одновременно				
5.4*	в анимации динамическое разнесение деталей, составляю-	2			
	щих изделие происходит согласно логике: комплексно (по-				
	следовательно + одновременно)				
5.5	в анимации продемонстрирован динамический возврат	1			
	всех деталей, составляющих изделие в исходное состояние				
	т.е. в собранное изделие				
	Итого:	35			

^{*} При наличии в анимации комплексного разнесения деталей, составляющих изделие участнику, автоматически засчитывается балл из пункта 5.3