Задача А. Одежда, сапоги и мотоцикл

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

В фильме «Терминатор-2: Судный день» герой Арнольда Шварценеггера выпал из прошлого на длинную улицу в точку на расстоянии m метров от её начала. Чтобы приступить к спасению Джона Коннора ему, как известно, требуются одежда, сапоги и мотоцикл, которые он может позаимствовать у посетителя бара. А на этой улице первый бар расположен в точке начала улицы, а каждый следующий бар располагается на расстоянии d метров от предыдущего. Петя Торопыжкин хочет рассчитать, сколько метров надо пройти Арнольду до ближайшего бара (чтобы поскорей приступить к спасению Джона Коннора).

Формат входных данных

В первой строке задано целое число $d, 1 \le d \le 2 \cdot 10^9$. Во второй строке задано целое число $m, 1 \le m \le 2 \cdot 10^9$.

Формат выходных данных

В единственной строке выдайте целое число — сколько метров нужно пройти Арнольду до ближайшего бара.

Система оценивания

Баллы за каждый тест начисляются независимо.

Примеры

стандартный ввод	стандартный вывод
300	100
1000	

Задача В. Разводим кроликов

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

Петя Торопыжкин решил заняться сельским хозяйством и разводить летом на даче кроликов. Для этого он выделил лужайку, на которой днём трава не растёт, зато за ночь нарастает g килограмм зелёной массы. В частности, к утру первого дня кролиководства на лужайке нарастёт именно столько травы.

Петя купил несколько кроликов, которым в первый день для питания требуется ровно f килограмм травы, а в каждый последующий день — на 1 килограмм больше, чем в предыдущий: $f+1, f+2, \ldots$ (кролики растут!).

Соответственно, в какой-то день травы не хватит на покрытие возросших аппетитов кроликов. Помогите Пете, напишите программу, которая определит, на какой день это случится.

Формат входных данных

Первая строка содержит целое число g, $1 \le g \le 10^9$. Вторая строка содержит целое число f, $1 \le f \le 10^9$.

Формат выходных данных

Выведите единственное целое число — номер дня, когда кроликам для пропитания не хватит травы, имеющейся на лужайке на утро этого дня.

Система оценивания

Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой подзадачи и необходимых подзадач успешно пройдены.

Подзадача	Баллы	Дополнительные	Необходимые	Информация
		ограничения	подзадачи	о проверке
1	55	$f,g \leqslant 100$		первая ошибка
2	45	$f,g \leqslant 10^9$	1	первая ошибка

Примеры

стандартный ввод	стандартный вывод
42	6
40	

Задача С. Странный калькулятор

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

В обычных калькуляторах при наборе целого положительного числа оно «прижимается» к правому краю индикатора, постепенно сдвигаясь влево и добавляя набираемые цифры справа. Например, при наборе числа 593 при последовательном нажатии клавиш 5, 9, 3 на индикаторе появляются числа 0 (изначально), 5, 59, 593.

Петя Торопыжкин собрал необычный калькулятор, имеющий *п*-позиционный индикатор, который изначально заполнен нулями, а при наборе *п*-значного числа его цифры сразу появляются в нужных разрядах. То есть при наборе того же числа 593 на Петином калькуляторе (в случае 3-позиционного индикатора) последовательно отображаются числа 000 (изначально), 500, 590, 593.

Набирая некоторое число, Петя одновременно суммировал те числа, которые отображались на индикаторе его калькулятора, получив в результате сумму S. Он задумался, а сможет ли он восстановить по этой сумме то число, которое он набирал. Помогите ему, напишите соответствующую программу.

Формат входных данных

Первая строка содержит целое положительное число $n,\,1\leqslant n\leqslant 10^5$ — разрядность Петиного калькулятора.

Вторая строка содержит десятичную запись числа S — полученной суммы. Гарантируется, что этот результат соответствует процессу набора какого-то n-значного целого положительного числа и суммирования чисел, отображаемых в процессе набора.

Формат выходных данных

Если по данному S возможно однозначно восстановить набираемое число, выведите его десятичную запись. Если однозначное восстановление невозможно, выведите -1.

Система оценивания

Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой подзадачи и необходимых подзадач успешно пройдены.

Подзадача	Баллы	Дополнительные	Необходимые	Информация
		ограничения	подзадачи	о проверке
1	20	$n \leqslant 5$		первая ошибка
2	30	$n \leqslant 1000$	1	первая ошибка
3	50	_	1, 2	первая ошибка

Примеры

стандартный ввод	стандартный вывод
3	593
1683	

Примечания

Как видно из примера, разрядность числа S может быть больше n.

Задача D. Коллекция настолок

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

Во время, свободное от учёбы и олимпиадного программирования, Петя Торопыжкин увлекается настольными играми. Правда, увлекается несколько спонтанно и хаотично. Вначале у него не было ни одной игры. Затем подворачивается возможность, он покупает новую настолку, играет в неё разок-другой и кладёт наверх имеющейся стопки. Кроме того, он знает некоторое количество способов обменять некоторую пару различных игр на одну новую игру, с которой происходит тот же процесс: играет, кладёт наверх стопки и, если после помещения какой-то игрушки в стопку пара верхних игр (и только верхних!) допускает обмен, то меняется снова и т.д. Если наверху стопки лежат две одинаковые игры, он продаёт верхнюю, затем, если есть возможность, снова меняется или продаёт и т.д. Ну а если нет возможности обменяться или продать, покупает новую игру. Такая вот насыщенная игровая жизнь.

По известной последовательности, в которой Петя покупает игрушки, определите, с какой стопкой игр останется Петя в конце игровой эпопеи.

Формат входных данных

В первой строке вводится целое число $G,\,2\leqslant G\leqslant 10^5$ — количество разных игр, с которыми Петя может иметь дело.

Во второй строке вводится целое число $C, 1 \leqslant C \leqslant 5 \cdot 10^4$ — количество возможных вариантов обмена пары игр на одну.

Затем в C строках перечислены варианты обменов — по три целых числа $g_{1,i}$, $g_{i,2}$, r_i через пробел $(1 \leqslant g_{1,i}, g_{i,2}, r_i \leqslant G, g_{1,i} \neq g_{i,2}, i = 1, \ldots, C)$: $g_{1,i}$, $g_{i,2}$ — номера игр, пару из которых можно обменять на игру с номером r_i . Гарантируется, что для каждой пары игр имеется не более одного возможного обмена.

В строке после находится число N — количество предложений о покупке, которые может сделать Петя, $1 \le N \le 10^5$.

Наконец, в последней строке через пробел перечислены N целых чисел b_i , $1 \le b_i \le G$, номера игр, которые последовательно может покупать Петя.

Формат выходных данных

В первой строке выведите количество игрушек, которые останутся у Пети в конце концов. Во второй строке через пробел перечислите номера игр в финальной стопке, начиная от появившейся раньше всего и заканчивая появившейся последней.

Система оценивания

Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой подзадачи и необходимых подзадач успешно пройдены.

Подзадача	Баллы	Дополнительные	Необходимые	Информация
		ограничения	подзадачи	о проверке
1	25	$2 \leqslant G \leqslant 10, \ 2 \leqslant C, N \leqslant 10$		первая ошибка
2	35	$2 \leqslant G \leqslant 1000,$	1	первая ошибка
		$2 \leqslant C, N \leqslant 1000$		
3	40		1, 2	первая ошибка

Примеры

стандартный ввод	стандартный вывод
5	2
3	5 4
2 3 4	
3 1 2	
1 4 5	
7	
1 2 3 5 5 3 2	

Примечания

Эволюция стопки игр происходит следующим образом:

$$|\rightarrow|\mathbf{1}\rightarrow|\mathbf{1}\mathbf{2}\rightarrow|\mathbf{1}\mathbf{2}\mathbf{3}\rightarrow|\mathbf{1}\mathbf{4}\rightarrow|\mathbf{5}\rightarrow|\mathbf{5}\rightarrow|\mathbf{5}\mathbf{5}\rightarrow|\mathbf{5}\mathbf{5}\rightarrow|\mathbf{5}\mathbf{3}\rightarrow|\mathbf{5}\mathbf{3}\mathbf{2}\rightarrow|\mathbf{5}\mathbf{4}$$

Вертикальная палочка — дно стопки. Жирным выделены купленные игрушки, курсивом — выменянные. Дважды получалась пара игрушек с номером 5, одна из которых продавалась.

Задача Е. Физический процесс

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

Кроме программирования Петя Торопыжкин увлекается физикой. На очередном заседании школьного физического кружка его участники произвели измерения ключевого показателя ω некоторого физического процесса, который может принимать только целые значения. Замеры производились в моменты $t=1,\,2,\,3,\,\ldots,\,T$ секунд. Однако прибор, которым оборудована школьная лаборатория, даёт весьма неточные результаты. Было определено, что истинное значение ω_t в момент t лежит в некотором диапазоне $[l_t,u_t]$, где $l_t,\,u_t$ — некоторые целые числа, $l_t\leqslant u_t$.

Из физики процесса известно, что в целом он протекает так, чтобы максимальное изменение Δ значения его ключевого показателя между соседними измерениями было минимальным:

$$\Delta = \max_{t=1,\dots,T-1} |\omega_{t+1} - \omega_t| \to \min.$$

Понятно, что идеальное протекание процесса связано с сохранением значения ω , однако оно может быть несовместимо с полученными замерами.

Пете необходимо написать программу обработки полученных измерений, которая выдала бы истинные значения ключевого показателя процесса во всем моменты, для которых получены измерения.

Формат входных данных

Первая строка содержит целое число T, $1 \leqslant T \leqslant 10^5$ — количество измерений. Следующие T строк содержат по два целых числа l_t , u_t , $0 \leqslant l_t \leqslant u_t \leqslant 10^9$, — диапазоны, содержащие истинные значения показателя в соответствующие моменты времени.

Формат выходных данных

В первой строке выведите минимальное значение Δ^* величины Δ . Во второй строке через пробел истинные значения ω_t^* показателя в моменты измерений. Если истинные значения не восстанавливаются однозначно, выведите какой-нибудь подходящий набор.

Система оценивания

Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой подзадачи и необходимых подзадач успешно пройдены.

Подзадача	Баллы	Дополнительные	Необходимые	Информация
		ограничения	подзадачи	о проверке
1	17	$T \leqslant 5, \ 0 \leqslant l_t \leqslant u_t \leqslant 10$		первая ошибка
2	20	$T \leqslant 10^5, \ 0 \leqslant l_t \leqslant u_t \leqslant 10^9,$		первая ошибка
		$\max l_t \leqslant \min u_t$		
3	27	$T \leqslant 1000,$	1	первая ошибка
		$0 \leqslant l_t \leqslant u_t \leqslant 100$		
4	36	$T \leqslant 10^5, \ 0 \leqslant l_t \leqslant u_t \leqslant 10^9$	1, 3	первая ошибка

Примеры

стандартный ввод	стандартный вывод
3	0
2 6	5 5 5
5 8	
3 5	
3	1
2 7	4 5 4
5 8	
3 4	

Примечания

Во втором примере подходящими являются также наборы восстановленных истинных значений 5 5 4 и 6 5 4.