Муниципальный этап Всероссийской олимпиады школьников по математике в 2024—2025 учебном году

Ответы и решения

Общие положения

- 1) Максимальная оценка за каждую задачу 7 баллов.
- 2) 7 баллов ставится за безукоризненное решение задач; 6 баллов означает, что в решении допущена мелкая погрешность, например, не разобран частный случай, не влияющий на решение. 4 или 5 баллов означают, что все идеи, необходимые для решения найдены, задачу в целом надо считать решённой, однако приведённое решение имеет существенные недостатки, например, в доказательстве ключевого факта имеются пробелы, устранимые не совсем очевидным образом. 2 3 балла ставится, если в решении задачи имеется серьёзное продвижение, однако для решения необходимы дополнительные идеи, не указанные в решении. 1 балл означает, что в решении имеется только очень мелкое продвижение, как то: замечен, но не доказан ключевой факт, разобран нетривиальный частный случай или приведён (но не обоснован) верный ответ, который не вполне тривиален. Если приведённые в решении факты, идеи, выкладки к решению явным образом не ведут, то задача оценивается в 0 баллов, также как и в случае, когда решение задачи отсутствует.
- 3) В таблице критериев по каждой задаче баллы не суммируются, то есть при применение критерия на большее количество баллов критерии на меньшее число баллов не дают вклада в результат.
- 4) В случае наличия в одной работе нескольких решений оценивается ровно одно решение, то, которое приносит больше баллов. За другие решения баллы не снимаются и не начисляются.
- 5) Критерии оценки, приведённые в прилагаемых решениях (таблица в конце решения каждой задачи) являются обязательными и не могут быть изменены. Однако это не означает, что выставляемые за задачу баллы обязательно должны совпасть с приведёнными в таблице: в случае, когда жюри вырабатывает дополнительные критерии (см. следующий пункт) жюри может выставить балл, которого в таблице нет (например, в таблице предусмотрены только 0 и 7 баллов, а жюри выставляет 5 баллов). Таблицы критериев составлены таким образом, что перечисляют отдельные случаи; накопление баллов за разные пункты не предусмотрено. Финальная оценка является целым числом от 0 до 7.
- 6) Оценка за задачу не может быть снижена за неаккуратный почерк, ошибки в русском языке, или явные описки в выкладках. Также недопустимо снижение баллов за не чёткий чертёж в геометрической задаче или даже за отсутствие такового. Нельзя требовать с участника олимпиады, чтобы он переписывал условие задачи, в том числе не обязательна краткая запись условия геометрических задач.
- 7) Школьник имеет право сам выбрать способ решения той или иной задачи; не допускается снижать оценку за то, что выбранный школьником способ решения не самый лучший или отличается от предложенных нами способов.
- 8) Факты и теоремы школьной программы (в том числе и те, которые приведены только в задачах школьных учебников) следует принимать без доказа-

тельств. Школьник имеет право без доказательства использовать любые такие факты, даже если они проходятся в более старших классах. Допускается (также без доказательств) использование математических фактов, изучающихся на факультативах. В частности, без ограничения можно применять формулы аналитической геометрии, математического анализа, принцип математической индукции, теоремы теории графов и т.п.

- 9) В случае, если решение школьника принципиально отличается от решений, предложенных программным комитетом, и не может быть подведено под предлагаемые критерии, проверяющие вырабатывают критерии самостоятельно в соответствии с пунктом 2.
- 10) В случае возникновения спорных ситуаций при проверке работ олимпиады жюри вправе обратиться за разъяснениями и советом к составителям пакета заданий: д.ф-м.н. Валерию Трифоновичу Шевалдину и к.ф-м.н. наук Сергею Эрнестовичу Нохрину (адрес эл.почты varyag2@mail.ru, тел. +79220350324).

Муниципальный этап Всероссийской олимпиады школьников по математике в 2024-2025 учебном году 9 класс

Время выполнения заданий <math>-3 часа 55 минут

9.1. Набор из трёх ненулевых чисел дважды подставили в качестве коэффициентов квадратного уравнения: сначала в одном порядке, потом в другом. Могло ли оказаться, что в первом случае полученное квадратное уравнение имеет два положительных корня, а во втором — два отрицательных? Ответ обоснуйте.

Решение: Пусть a, b и c — числа набора.

Ситуация 1: все они одного знака. Тогда при любом их расположении на месте коэффициентов квадратного уравнения по теореме Виета получится, что произведение корней (если они есть) положительно, а их сумма отрицательна. Значит, оба корня (если они есть) будут отрицательны для всех шести случаев расположения коэффициентов квадратного уравнения.

Ситуация 2: Два числа (не ограничивая общности, можно считать, что это числа a и b) одного знака, а одно (число c) — другого. Тогда из шести возможных квадратных уравнений $0 = ax^2 + bx + c$, $0 = bx^2 + ax + c$, $0 = cx^2 + ax + b$, $0 = cx^2 + bx + a$, $0 = ax^2 + cx + b$ и $0 = bx^2 + cx + a$ в первых четырёх свободный член и старший коэффициент будут разных знаков; по теореме Виета каждое из этих четырех уравнений будет иметь ровно два корня, но разных знаков. Эти случаи для решения задачи нам неинтересны. А пятое и шестое уравнения, если и будут иметь по два корня, то эти корни будут одного знака, обязательно положительные. Вывод: нами рассмотрены все возможные ситуации расположения знаков чисел a, b и c, и во всех этих случаях ответ на вопрос задачи является отрицательным.

Рекомендации по проверке:

есть в работе	баллы
Верный обоснованный ответ	7 баллов
Верно проанализирован случай, когда среди чисел набора	3 балла
есть числа разного знака	
Верно разобран случай, когда все числа набора одного	2 балла
знака	
Верно разобраны некоторые (не все возможные)	1 балл
перестановки коэффициентов (например, только	
попарные)	
Ответ без обоснования или с неверным обоснованием, а	0 баллов
также иллюстрация верного ответа конечным числом	
конкретных примеров	

9.2. При проверке диктанта оказалось, что грубые ошибки у всего класса в сумме составляют более четверти всех ошибок. Если бы каждый ученик сделал в три раза больше грубых ошибок и на две больше негрубых, то число грубых ошибок стало бы ровно в 5 раз меньше числа негрубых. Докажите, что по меньшей мере треть класса написала диктант безошибочно.

Решение:

Способ 1. Пусть общее количество допущенных в диктанте грубых ошибок равно K. Тогда общее число ошибок не превосходит 4K, и из них не более 3K негрубых. В гипотетическом варианте будет допущено ровно 3K грубых ошибок, и ровно 15K негрубых, следовательно, дополнительно будет допущено не менее 15K - 3K = 12K негрубых ошибок. Так как каждый ученик допустил ровно две дополнительные негрубые ошибки, учеников в классе не меньше 12K: 2 = 6K. Но учеников, допустивших хотя бы одну ошибку, не больше, чем самих ошибок, то есть не больше 4K. Значит, доля учащихся класса, допустивших хотя бы одну ошибку, не превосходит

$$\frac{4K}{6K} = \frac{2}{3},$$

то есть по крайней мере треть класса ошибок в диктанте не допустила. Утверждение доказано.

Способ 2. Пусть в классе n учеников, и пусть они в сумме в диктанте сделали x ошибок, из которых y грубых, а x-y негрубых. По условию y>0.25x. При изменённой ситуации ученики совершат 3y грубых ошибки и x-y+2n негрубых; по условию $3y\cdot 5=x-y+2n$. Получили систему в целых неотрицательных числах

$$\begin{cases} y > 0.25x, \\ 15y = x - y + 2n. \end{cases}$$

Умножив неравенство системы на 16 и исключив переменную y с помощью уравнения, получим x+2n>4x, откуда $x<\frac{2}{3}n$. Значит, количество учеников, не совершивших ошибку, не меньше, чем $n-x>\frac{1}{3}n$, и их доля в классе больше, чем $\frac{1}{3}$.

Способ 3. Пусть в классе n человек, A число всех грубых ошибок, B — число всех негрубых. В силу условия

$$3A = \frac{1}{5}(B+2n)$$
 и $A > \frac{1}{4}(A+B)$,

то есть 3A>B. Нам достаточно доказать, что $A+B\leqslant \frac{2}{3}n$. Из неравенства

$$\frac{B+2n}{5} > B$$

выводим, что B < 0.5n. Поэтому

$$A = \frac{1}{15}(B+2n) < \frac{1}{6}n, \quad A+B < \left(\frac{1}{6} + \frac{1}{2}\right)n = \frac{2}{3}n.$$

есть в работе	баллы
Верное доказательство	7 баллов
Доказано, что количество учеников в классе не менее, чем	5 баллов
в 6 раз превосходит количество грубых ошибок	
Условие задачи верно записано в виде системы уравнений	3 балла
и неравенств	
Утверждение проиллюстрировано конкретными	0 баллов
примерами (в любом количестве)	

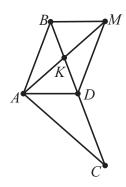
9.3. Дан треугольник ABC, в котором BC = 2AB. Точка D - cepeдина стороны BC, точка K - cepeдина отрезка BD. Докажите, что AC = 2AK.

Решение:

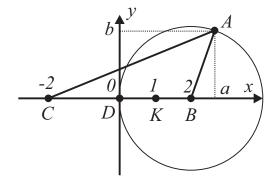
Способ 1. На продолжении отрезка AK за точку K отметим точку M так, что AK = KM (см. рисунок ниже). Четырёхугольник ABMD — параллелограмм (так как его диагонали делятся пополам точкой пересечения), поэтому DM = AB. Но тогда $MD = \frac{1}{2}BC = DC$. Кроме того,

$$\angle ADM = 180^{\circ} - \angle BAD = 180^{\circ} - \angle BDA = \angle ADC.$$

Тогда треугольники ADM и ADC равны по двум сторонам и углу между ними. Значит, AC = AM = 2AK, ч. т. д.



К решению задачи 9.3, способ 1



К решению задачи 9.3, способ 2

Способ 2. Применим координатный метод, для чего введём систему координат. Началом координат выберем точку D, а ось абсцисс направим вдоль луча DB. Масштаб выберем так, чтобы DB = 2 (см. рисунок выше). Тогда координаты точек такие: B(2; 0), C(-2; 0), K(1; 0). Так как BA = 0.5BC = 2, координаты точки A(a; b) удовлетворяют равенству $(a-2)^2 + b^2 = 4$. Нам надо доказать, что

$$2AK = AC \leftrightarrow 4AK^2 = AC^2 \leftrightarrow 4((a-1)^2 + b^2) = (a+2)^2 + b^2 \leftrightarrow b^2 = 4a - a^2.$$

Это верно, так как $b^2 = 4 - (a-2)^2 = 4a - a^2$.

Рекомендации по проверке:

есть в работе	баллы
Верное доказательство	7 баллов
Выкладки и рассуждения, из которых ход доказательства	0 баллов
не виден	

9.4. Знайка хочет написать на доске 100-значное натуральное число, а затем разбить его десятичную запись в одном месте (не перед цифрой 0) на два многозначных числа так, чтобы одно число являлось квадратом другого. Незнайка утверждает, что Знайке этого сделать не удастся. Прав ли Незнайка? Ответ обоснуйте.

Решение: Незнайка, хоть и не блещет математическими способностями, иногда может высказывать и верные суждения. Это как раз тот случай. Докажем это.

<u>Способ 1.</u> Возможны два случая. 1) Меньшее из чисел, полученных Знайкой при разбиении, имеет не больше 33 знаков в своей десятичной записи. Значит, оно строго меньше числа

$$A = 1 \underbrace{00 \dots 0}_{33 \text{ нуля}}.$$

Тогда его квадрат меньше числа

$$A^2 = 1 \underbrace{00 \dots 0}_{66 \text{ Hylle} \ddot{\mathbf{u}}},$$

то есть этот квадрат не более, чем 66-значный. Но большее из полученных Знайкой чисел имеет в десятичной записи по крайней мере 67 цифр.

2) Меньшее из чисел, полученных Знайкой при разбиении, имеет 34 или больше цифр в своей десятичной записи. Тогда оно не меньше числа

$$A = 1 \underbrace{00 \dots 0}_{33 \text{ hydg}},$$

а его квадрат не меньше числа

$$A^2 = 1 \underbrace{00 \dots 0}_{66 \text{ нулей}},$$

то есть имеет по крайней мере 67 цифр в своей десятичной записи. При этом большее из полученных Знайкой чисел имеет в десятичной записи не больше 66 цифр. В обоих случаях квадрат меньшего числа не может оказаться большим числом. Значит, Знайка не сможет осуществить задуманное.

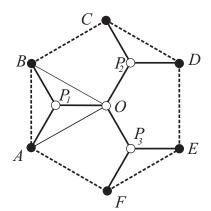
Способ 2. Предположим, от противного, что Знайке удалось осуществить задуманное. Пусть его меньшее число X оказалось k-значным, а большее Y-(100-k)-значным. Тогда $10^{k-1} \leqslant X < 10^k$, поэтому $10^{2k-2} \leqslant X^2 < 10^{2k}$, то

есть число X^2 или 2k-значное, или 2k-1-значное. Если $Y=X^2$, то в первом случае получится равенство 100-k=2k, во втором -100-k=2k-1. Оба они не имеют решений в натуральных числах, поэтому наше предположение ошибочно. Противоречие. Незнайка прав.

Ответ: Незнайка прав.

Рекомендации по проверке:

есть в работе	баллы
Верный обоснованный ответ	7 баллов
Верно разобран только один из случаев: а) меньшее число	4 балла
Знайки содержит 33 цифры (или меньше); б) меньшее	
число Знайки содержит 34 цифры (или больше)	
Доказано, что квадрат <i>п</i> -значного (в десятичной записи)	2 балла
числа содержит либо $2n$ цифр, либо $2n-1$ цифру	
(достаточно случаев $n = 33$ и $n = 34$)	
Ответ без обоснования или с неверным обоснованием	0 баллов



9.5. В вершинах правильного шестиугольника со стороной 1 находятся нефтяные вышки. Требуется построить сеть дорог, чтобы по ним от каждой вышки можно было проехать к любой другой вышке. Обозначим через S минимально возможную сумму длин этих дорог. Докажите, что $S \leq 3\sqrt{3}$.

Решение: Достаточно привести пример требуемой сети дорог, сумма длин которых в точности равна $3\sqrt{3}$. Пример приведен на рисунке. Здесь ABCDEF — правиль-

m K решению задачи 9.4 мер приведен на рисунке. Здесь ABCDEF — правильный шестиугольник, в вершинах которого находятся нефтяные вышки, O — его центр, P_1 , P_2 , P_3 — центры правильных треугольников ABO, CDO, EFO (чтобы не загромождать чертёж, на рисунке изображён только треугольник ABO). Сеть дорог состоит из 9 прямолинейных участков, длина каждого из которых равна радиусу окружности, описанной около правильного треугольника со стороной 1.

Рекомендации по проверке:

есть в работе	баллы
Верный пример с проверкой того, что сумма длин всех	7 баллов
дорог не больше $3\sqrt{3}$	
Приведён верный пример, но не проверена, что сумма	5 баллов
длин всех дорог не больше $3\sqrt{3}$	
Неверные примеры и/или неверные доказательства	0 баллов

9.6. Докажите, что если сумма трёх дробей

$$\frac{a^2+b^2-c^2}{2ab}$$
, $\frac{b^2+c^2-a^2}{2bc}$, $\frac{c^2+a^2-b^2}{2ca}$

 $(a, b \ u \ c - \partial e \ddot{u} c m e u m e n + u e u c n a)$ равна $1, m o \partial h a u s m u x \partial p o b e \ddot{u}$ равна $-1, a \partial b e \partial p y r u e p a b h u 1.$

Решение: Условие задачи записывается уравнением

$$\frac{a^2 + b^2 - c^2}{2ab} + \frac{b^2 + c^2 - a^2}{2bc} + \frac{c^2 + a^2 - b^2}{2ca} = 1.$$

Преобразуем его равносильным образом.

$$c(a^{2} + b^{2} - c^{2}) + a(b^{2} + c^{2} - a^{2}) + b(c^{2} + a^{2} - b^{2}) = 2abc,$$

$$-a^{3} + a^{2}(c+b) + a(b^{2} + c^{2} - 2bc) + b^{2}c + bc^{2} - b^{3} - c^{3} = 0,$$

$$a^{2}(c+b-a) + a(b-c)^{2} - (b+c)(b-c)^{2} = 0,$$

$$a^{2}(c+b-a) + (b-c)^{2}(a-b+c) = 0,$$

$$(c+b-a)(a^{2} - (b-c)^{2}) = 0,$$

$$(c+b-a)(a-b+c)(a+b-c) = 0.$$

Одна из трёх скобок в левой части обязана равняться нулю, без ограничения общности, пусть первая: a=b+c. Тогда $a^2=b^2+c^2+2bc$, и вторая дробь равна -1. С другой стороны, $b^2=a^2+c^2-2ac$, поэтому третья дробь равна 1, и $c^2=a^2+b^2-2ab$, поэтому первая дробь равна 1.

Рекомендации по проверке:

есть в работе	баллы
Верное доказательство	7 баллов
Доказано, что условие задачи равносильно тому, что в	5 баллов
тройке (a, b, c) одно из чисел равно сумме (или разности)	
двух других	
Рассмотрена конкретная тройка ненулевых чисел, в	1 балл
которой одно число равно сумме двух других	
Выкладки, не ведущие к решению	0 баллов