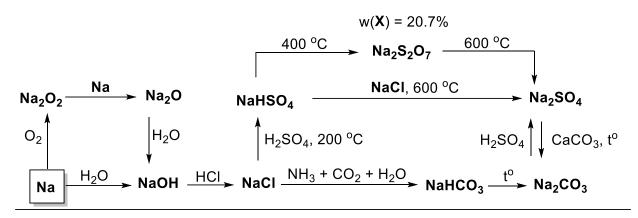
Критерии и методика оценивания заданий муниципального этапа ВсОШ по химии 2024/2025 учебного года

9 класс ЗАДАЧА 1. ФИЗИЧЕСКИЙ ИНСТИТУТ АКАДЕМИИ НАУК СССР

№	Содержание ответа	Число баллов
1	Минерал на основе диоксида циркония кубической модификации, носит название фианит. К названию минерала отсылает название задачи.	2 балла
	Вещество A представляет собой оксид циркония (IV): ZrO ₂ .	1 балл
	Формулу сульфата и оксида можно записать в следующем виде: $X_a(SO_4)_b$, X_aO_b . Равные индексы у этих веществ объясняются одинаковым зарядом иона кислорода и сульфат иона. Соотношение между сульфатом и оксидом всегда будет один к одному, поскольку металл в реакции содержится только в этих двух веществах. $X_aO_b + bH_2SO_4 = X_a(SO_4)_b + bH_2O$ Можно записать равенство количества веществ сульфата и оксида элемента \mathbf{X} в виде уравнения:	составлено общее уравнение для формирования сульфата металла X 2 балла
2	$\overline{M(\text{оксида})} = \overline{M(\text{сульфата})}$ Подставив молярные массы веществ, получаем: $\frac{10}{aAr(X) + b16} = \frac{23}{aAr(X) + b96}$ Выразим атомную массу элемента \mathbf{X} , как функцию индексов a и b : $Ar(X) = \frac{45,54b}{a}$	предложена математическая модель для расчета атомной массы элемента X 6 баллов

	Перебирая значения вален	тности э	лемент	а X . пол	vчим:	сделан перебор
				,,	,	валентности и
	D = = = = = = = = = = = = = = = = = = =	A m(V)		1.	, l	указано почему
	Валентность І	Ar(X) 22.8	2	b 1	-	выбирается
		45.5	1	1	-	определенный
	III	68.3	2	3	-	вариант
	IV	91.1	1	2	-	3 балла
	V	113.7	2	5	-	
	VI	136.6	1	3		
	VII	159.4	2	7	1	
		137.1		,	1	
	-					
	Близкими к реальным зна	чениям а	атомны	х масс о	казываются	
	значения, полученные для	валентн	ости І и	IV, coo	тветственно	
	элемент X должен представлять собой или натрий, или					
	цирконий. Поскольку про металл X известно, что он					
	цирконии. Поскольку п	ро мета	алл Х	известн	но, что он	
	растворяется только в сме	еси азотн	ной и п	лавиков	ой кислоты,	
	то можно сделать вывод: э	пемент !	х – это	Zr.		
	то можно одолать выводу о		313			
	Написаны реакции 1 и 2.					
	1) $ZrO_2 + 2H_2SO_4 = Zr(S)$	O.) ₂ + ₽.	\cap			1 балл
3		-				
	2) $3Zr + 4HNO_3 + 21HF$	$= 3H_3[Zr]$	$F_7] + 4N_9$	$O + 8H_2C$)	3 балла
	Пантанами баге 1 .			D T	I [ZeE]	
4	Предположена брутто-фор	рмула со	рединен	ия В . Е	13[ZrF7] или	2 балла
 4	ZrF ₄ · 4 HF.					4 vajijia
	Итого					20 баллов


ЗАДАЧА 2. РОЗОВЫЙ МИНЕРАЛ

No	Сод	ержание ответа	Число баллов
	Указаны формулы всех со Зашифрованные структур		
1	$\begin{aligned} &MnCl_2 - \mathbf{A} \\ &H_2SiO_3 - \mathbf{B} \\ &Mn(OH)_2 - \mathbf{C} \end{aligned}$	$\begin{array}{l} MnOOH - \textbf{D} \\ MnO_2 - \textbf{E} \end{array}$	по 0,5 баллов (<i>всего 2,5 балла)</i>
	Написаны реакции 1 –3. Уравнения реакций:		за каждую реакцию
	 MnSiO₃ + 2HCl = Mr MnCl₂ + 2NaOH = M 3Mn(OH)₂ + O₂ = 2M 		по 1 баллу (<i>всего 3 балла)</i>

2	Проведем расчет количества вещества $MnSiO_3$ (минерал родонит, в задаче много подсказок о том, что это силикат и соль марганца): $n = \frac{25}{131} = 0,191 \text{ моль}$ Количество вещества соляной кислоты в исходном растворе: $n = \frac{100 \cdot 1,0980 \cdot 0,2}{36,5} = 0,602 \text{ моль}$ Исходя из уравнения реакции 1 , по прошествию двух часов в реакционном сосуде останется: $0,191$ моль $MnCl_2$ и $0,22$ моль	за верный расчет начальных количеств вещества исходных веществ (силиката марганца, соляной кислоты и гидроксида натрия) по 1 баллу (всего 3 балла)
	HCl. Количество вещества гидроксида натрия в прибавляемом растворе: $n = \frac{48 \cdot 0{,}35}{40} = 0{,}42 \text{ моль}$	за верный расчет количества вещества продуктов реакции после прибавления соляной кислоты 1,5 балла
	Прибавленный гидроксид натрия пойдет на нейтрализацию оставшейся соляной кислоты и на реакцию с хлоридом марганца (II). После реакции в растворе останется NaCl (образуется в ходе реакции гидроксида натрия с соляной кислотой и хлоридом марганца (II)), H ₂ O (вода образуется в ходе реакции, а также дважды вносилась в систему с растворами реагентов), MnCl ₂ (хлорида марганца (II) избыток по отношению к прибавляемому гидроксиду натрия). Причем m(NaCl) = 13,1 г, m(H ₂ O) = 123,0 г,	за верный расчет остатков веществ после прибавления гидроксида натрия 3 балла
	$m(MnCl_2) = 8,2$ г. Массовая доля хлорида марганца (II) составит 5,7%.	массовой доли вещества А 2 балла
3	Поскольку при 100% выходе можно получить 0,191 моль MnCl ₂ , то при выходе в 35% можно получить 0,067 моль (8,44 г) MnCl ₂ .	2 балла
4	Источниками разовых и фиолетовых пигментов в древности служили моллюски, красильные растения (цветки) и перетертые минералы.	1 балл
	Итого	18 баллов

ЗАДАЧА 3. МЫЛЬНАЯ ИСТОРИЯ

Зашифрованные структуры и уравнения реакций:

- 1) $2Na + O_2 = Na_2O_2$
- 2) $Na_2O_2 + 2Na = 2Na_2O$
- 3) $Na_2O + H_2O = NaOH$
- 4) Na + H_2O = NaOH + H_2
- 5) NaOH + HCl = NaCl + H_2O
- 6) $2NaCl + H_2SO_4 = 2NaHSO_4 + 2HCl$
- 7) NaCl + NH₃ + CO₂ + H₂O = NaHCO₃ + NH₄Cl
- 8) NaHCO₃ = Na₂CO₃ + $\overline{CO_2}$
- 9) $NaHSO_4 + NaCl = Na_2SO_4 + HCl$
- 10) $2NaHSO_4 = Na_2S_2O_7 + H_2O$
- 11) $Na_2S_2O_7 = Na_2SO_4 + SO_3$
- 12) $Na_2CO_3 + H_2SO_4 = Na_2SO_4 + CO_2 + H_2O$
- 13) $Na_2SO_4 + CaCO_3 = Na_2CO_3 + CaSO_4$

№	Содержание ответа	Число баллов
1	Расшифрованы соединения A–I . <i>Все соединения указаны в цепочки выше</i> .	по 0,5 баллов (всего 5 баллов)
2	Написаны все уравнения реакции и расставлены коэффициенты (13 реакций). Все реакции указаны выше. Общий балл округляется в верхнюю сторону до ближайшей половины.	Реакция 1) оценивается в 1 балл; реакции 2) - 13) оцениваются по 0,75 балла (всего 10 баллов)
3	Тривиальное название соединения F – пищевая сода, H – кальцинированная сода. На английском языке «натрий» называется «sodium», что напрямую связано с содой и мыльной водой, на что также указывает название задачи.	по 1 баллу за каждый факт (<i>всего 3 балла)</i>
	Итого	18 баллов

ЗАДАЧА 4. ЗУБЕЦ И КРУГЛЫЙ КАМЕНЬ

No	Содержание ответа	Число баллов
	Латунь – это сплав меди и цинка, а также некоторых других	1 балл за состав
1	легирующих металлов. Примеры других сплавов: бронза (медь и	латуни по 1 баллу за
	олово), нихром (никель и хром).	каждый сплав
		(всего 3 балла)

Написаны реакций 1–6.

Уравнения реакций:

- 1) $Zn + HCl = ZnCl_2 + H_2$
- 2) $Fe + HCl = FeCl_2 + H_2$
- 3) $Zn + Cl_2 = ZnCl_2$
- 4) $2Fe + 3Cl_2 = 2FeCl_3$
- 5) $ZnCl_2 + 2NaOH = Zn(OH)_2 + 2NaCl$
- 6) $Zn(OH)_2 + 2NaOH = Na_2[Zn(OH)_4]$

Из задачи известно:

2

10
$$\Gamma$$
 $\begin{pmatrix} 6 & \Gamma \\ X \\ Y \\ 4 & \Gamma \end{pmatrix}$ + 2HCI = XCI₂ + $\begin{pmatrix} H_2 \\ H_2 \end{pmatrix}$ 3,67 π

10 r
$$\begin{vmatrix} 6 \text{ r} \\ aX \end{vmatrix}$$
 + b/2Cl₂ = $\begin{vmatrix} X_aCl_b \\ Y_cCl_d \end{vmatrix}$ 24,16 r

Откуда можно сделать систему двух уравнений:

$$\left\{\frac{6}{M(X)} + \frac{4}{M(Y)}\right\}$$

$$= \frac{3.67}{22.4} \frac{6}{M(X)} \cdot (M(X) + 35.5 \cdot a) + \frac{4}{M(Y)}$$

$$\cdot (M(Y) + 35.5 \cdot b) = 24.16$$

Поскольку реакция окисления хлором металлов может приводить к продуктам с другой стехиометрией, тут не стоит предполагать те же продукты, что образовывались в случае реакции с соляной кислотой. Однако, поскольку анион хлора одновалентный то можно перебрать все случаи с $a = 1 \dots 4, b = 1 \dots 4$. Если ни одна из подсказок данных до этого в задаче не привела к пониманию того, что перед нами Fe или Zn, то придется решать несколько систем уравнений перебирая значения a и b. Формулировка задачи дает понять, что металл X это Zn, а также подсказкой служит название задачи, поскольку «цинк» - это «зубец», описание металла как одного из главных компонентов латуни и имеющего серебристый цвет, тот факт, что растворимые соли данного металла реагируют со щелочами сначала с выпадением, а затем растворением осадка. Решение находится

по **0,5 баллов** (всего **3 балла**)

составление
систем(ы)
уравнений,
предположение
Zn, как металла X,
подбор параметра
b
15 баллов

	интуитивном $a = 2$ и $b = 3$, причем решением сразу будут	
	молярные массы сразу двух металлов.	
	Цинк – распространенный металл, применяемый для защиты,	1 балл
	стали от коррозии, в качестве основного компонента электродов,	
	а также в полиграфии, как пластины с легким травлением.	
3	По реакции цинка с раствором щелочи в лаборатории получают	1 балл
	чистый водород.	
	Получаемый иным образом водород, например при реакции	1 балл
	металлов с соляной кислотой, загрязнен парами хлороводорода.	
	Zn + 2NaOH + 2H2O = Na2[Zn(OH)4] + H2	
	Итого	24 балла

ЗАДАЧА 5. ТЕПЛОВОЙ ЭФФЕКТ

№	Содержание ответа	Число баллов
1	Реакцию сгорания этана можно представить следующим образом: $C_2H_{6(\Gamma)}+\frac{7}{2}O_{2(\Gamma)}=2CO_{2(\Gamma)}+3H_2O_{(\aleph)}$ Проводить термохимических расчетов следует с использованием закона Гесса, согласно которому тепловой эффект химической реакции определяется начальным и конечным состоянием реакционной системы. Значит, тепловой эффект нужной реакции (Q_5) можно представить как линейную комбинацию тепловых эффектов реакций (Q_i) , представленных в условии задачи. Необходимо представить целевую реакцию как комбинацию реакций $(1)-(4)$. Легко показать, что комбинация типа $-(2)+(3)+0.5\cdot(1)$ дает целевую реакцию. Значит, $Q_5=-Q_2+Q_3+0.5\cdot Q_1$ $Q_5=-137.19+1411.15+0.5\cdot571.66=1559.79\ кДж$ Если записывать реакцию на 2 моль этана, то ее тепловой эффект составит 3119.58 кДж.	3 балла 3 балла 3 балла
2	Количество теплоты, требующееся для нагревания воды, рассчитаем по следующей формуле: $Q' = C \cdot m \cdot (T_2 - T_1),$ где C – теплоемкость воды. С учетом того, что плотность воды равна 1 кг/л , получаем: $Q' = 4.184 \cdot 1 \cdot 10 \cdot 10^3 \cdot (60 - 10) = 2092 \cdot 10^3 \text{ Дж} == 2092 \text{ кДж}$ При сгорании $1 \text{ моль этана выделяется } 1559.79 \text{ кДж теплоты. Значит,}$ необходимое количество этана можно рассчитать по пропорции: $n(C_2H_6) = \frac{2092}{1559.79} \cdot 1 = 1.34 \text{ моль}$	3 балла

При н. у. объем 1 моль любого газа составляет 22.4 л. В таком случае	
объем этана равен $V=22.4$ л/моль · 1.34 моль $=30.0$ л.	
	4 балла
Удельная энергоемкость рассчитывается в соответствии со следующей	
формулой:	
$Q_{\scriptscriptstyle { m y}{ m g}}=rac{Q}{m'}$	
где Q — количество выделившейся теплоты при сгорании топлива, m —	
масса топлива.	
Термохимические уравнения, представленные в задаче, отражают	
тепловой эффект химической реакции на 1 моль топлива. Из	
з соображений размерности нетрудно догадаться, что отношение	
мольной теплоты сгорания (кДж/моль) к молярной массе топлива	
(г/моль) есть не что иное как удельная энергоемкость топлива (кДж/г).	
Тогда,	
$Q_{ m y_{ m J}}({\it C}_{ m 2}H_{ m 6})=(1559.79~{ m к}$ Дж/моль) $/(30~{ m г}/{ m моль})=52~{ m к}$ Дж $/{ m г}$	2 балла
$Q_{\rm yg}(C)=(393.51~{\rm кДж/моль})/(12~{\rm г/моль})=32.8~{\rm кДж/г}$	2 балла
Итого	20 баллов