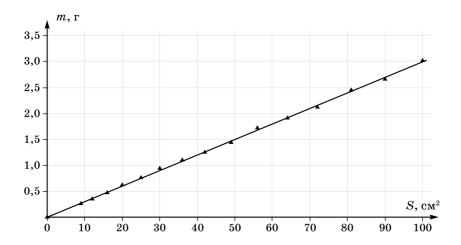
7 класс

Задача №7-Е1. «Взвешивание» коэффициента


Из листа картона вырезаем несколько квадратов (прямоугольников) с известными сторонами, вычисляем их площади, взвешиваем на весах и определяем массы.

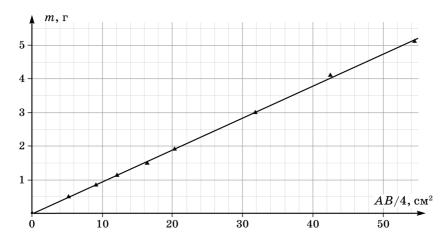
Возможный вариант реализации: нарисуем квадрат со стороной 10 см, определяем массу, вдоль одной стороны отрезаем полоску шириной 1 см, получаем прямоугольник 10 см*9 см, взвешиваем, вдоль другой стороны отрезаем полоску шириной 1 см, получаем квадрат со стороной 9 см, взвешиваем, и т.д.

a,cm	<i>b</i> ,см	$S = ab, cm^2$	m,г
10	10	100	3,02
10	9	90	2,66
9	9	81	2,45
9	8	72	2,12
8	8	64	1,91
8	7	56	1,72
7	7	49	1,44
7	6	42	1,25
6	6	36	1,10
6	5	30	0,94
5	5	25	0,76
5	4	20	0,62
4	4	16	0,47
4	3	12	0,35
3	3	9	0,26

Масса фигур связана с их площадью следующим соотношением: $m=\rho_S S$. Тогда с помощью углового коэффициента наклона графика найдем поверхностную плотность картона:

$$\rho_S = \frac{\Delta m}{\Delta S} = \frac{3.0 - 0.3}{100 - 9} = 0.03 \frac{\Gamma}{\text{cm}^2} = 0.30 \frac{\text{K}\Gamma}{\text{M}^2}$$

Для того, чтобы определить объёмную плотность картона, нужно определить толщину листа h. Сделать это можно методом рядов. Из остатков картона нарежем куски, сложим их друг на друга, хорошо прижмём к столу для устранения воздушных зазоров и определим высоту получившегося столбика. Толщина листа оказывается равной


$$h = 0.35 \text{ mm}$$

Объемная плотность ρ_V равна

$$\rho_V = \frac{\rho_S}{h} = \frac{0.03}{0.035} = 0.86 \frac{\Gamma}{\text{cm}^3} = 860 \frac{\text{KF}}{\text{m}^3}$$

На листе картона, используя метод, описанный в условии, рисуем несколько эллипсов. Измеряем большую и малую оси эллипса, производим измерения массы. Представляется разумным все эллипсы рисовать один внутри другого, используя проведённые перпендикулярные линии для измерения длин осей. Сначала вырезается самый большой эллипс, измеряем $A,\ B$ и $m,\$ затем вырезаем эллипс поменьше и т.д.

А,см	В,см	$\frac{AB}{4}$, cm ²	m,г
15,8	13,8	54,5	5,12
14,3	11,9	42,5	4,11
12,7	10,0	31,8	3,00
10,8	7,5	20,3	1,91
10,4	6,3	16,4	1,49
8,8	5,5	12,1	1,13
7,4	4,9	9,1	0,84
6,1	3,4	5,2	0,49

Масса эллипса m связана с его площадью S следующим образом $m=\rho_S S$, а так как площадь S определяется как $S=\frac{1}{4}kAB$, то масса равна $m=\rho_S k\frac{AB}{4}=C\frac{AB}{4}$ Угловой коэффициент наклона графика равен

$$C = \frac{\Delta m}{\Delta(\frac{AB}{4})} = \frac{5.1 - 0.5}{55 - 5} = 0.092 \frac{\Gamma}{\text{cm}^2} = 0.92 \frac{\text{kf}}{\text{m}^2}$$

Определяем коэффициент k:

$$C = \rho_S k$$

$$k = \frac{C}{\rho_S} = \frac{0.092}{0.03} \approx 3.1$$

Теоретическое значение коэффициента k - знаменитое иррациональное число "пи" $\pi=3,14...$