для жюри

Решение (авторы: Филатова Е.А., Фурлетов А.А.)

- **1.** Для приготовления раствора гидроксида натрия NaOH, не содержащего карбонатионов, можно использовать ряд приемов:
- а) добавление в раствор небольшого количества хлорида бария BaCl₂;
- б) разбавление прокипяченной водой концентрированного раствора NaOH;
- в) растворение металлического натрия N_a в этаноле C_2H_5OH с последующим гидролизом алкоголята.

2. Уравнения реакций:

- 1) Na₂CO₃ + HCl = NaHCO₃ + NaCl (в присутствии фенолфталеина)
- 2) $Na_2CO_3 + 2HCl = 2NaCl + CO_2 + H_2O$ (в присутствии метилового оранжевого) Объем соляной кислоты HCl, израсходованный на титрование карбоната натрия Na_2CO_3 в присутствии метилового оранжевого (реакция 2), будет больше в 2 раза объема соляной кислоты HCl, израсходованного на титрование карбоната натрия Na_2CO_3 в присутствии фенолфталеина (реакция 1).

3. Уравнения реакций:

$$B$$
 присутствии фенолфталеина (V_1): NaOH + HCl = NaCl + H₂O Na₂CO₃ + HCl = NaHCO₃ + NaCl B присутствии метилоранжа (V_2): NaOH + HCl = NaCl + H₂O Na₂CO₃ + HCl = NaHCO₃ + NaCl NaHCO₃ + HCl = H₂CO₃ + NaCl

Как видно из уравнений реакций, разность V_2 – V_1 идет на титрование гидрокарбоната натрия $NaHCO_3$ до угольной кислоты H_2CO_3 . Точно такой же объем раствора соляной кислоты HCl идет на титрование карбоната натрия Na_2CO_3 до гидрокарбоната натрия $NaHCO_3$.

Отсюда

$$c(Na_2CO_3)\cdot V(Na_2CO_3) = c(HCl)\cdot V(HCl)$$

$$c(Na_2CO_3), \text{мг/л} = 1000\cdot c(HCl)\cdot \frac{V_2-V_1}{V_0}\cdot M(Na_2CO_3)$$

Концентрация NaOH в исходном растворе может быть найдена по формуле

$$c(\textit{NaOH})$$
, мг/л = $1000 \cdot c(\textit{HCl}) \cdot \frac{2V_1 - V_2}{V_0} \cdot \textit{M(NaOH)}$

Система оценивания

- **1.** Способы приготовления NaOH без Na₂CO₃ 2 способа по 1 б
- 2 балла

2. Уравнения реакций — 2 уравнения по 1 б

2 балла

(если неверно уравнены — по 0.5 б)

3. Отношение объемов HCl

1 балл

(если правильно определено, в каком случае объем HCl больше — 0.5 б)

4. Вывод формул — 2 формулы по 2 б

4 балла

5. Определение, в какой колбе какое вещество находится

2 балла

6. Точность титрования оценивается, исходя из разницы (ΔV , мл) между величиной среднего объема HCl, который участник затратил на титрование в присутствии метилового оранжевого, и ожидаемым значением, в соответствии с таблицей:

Определение NaOH		Определение Na ₂ CO ₃	
ΔV , мл	Баллы	ΔV , мл	Баллы
≤ 0.1	6	≤ 0.1	6
0.1 - 0.2	5	0.1 - 0.2	5
0.2 - 0.3	4	0.2 - 0.3	4
0.3 - 0.4	3	0.3 - 0.4	3
0.4 - 0.5	2	0.4 - 0.5	2
0.5 - 1.0	1	0.5 - 1.0	1
> 1.0	0	> 1.0	0

7. Правильность расчета массы гидроксида натрия и карбоната натрия (оценивается, исходя из среднего объема титранта, полученного участником, безотносительно точности титрования) — 2 значения по 1 б 2 балла

ИТОГО 25 баллов

В случае, если участнику понадобится дополнительное количество реактива, долив реактива производится 1 раз без штрафа, в последующих случаях — со штрафом 1 балл, но не более 4 баллов суммарно.