

Пояснения к олимпиадным заданиям Информационная безопасность 10-11 класс

Алексеевский П.И.

Пояснение к заданиям 12-12 (СЕЧЕНИЕ молодеми)

• В этих заданиях следует обратить внимание на права доступа к файлам. В большинстве современных операционных систем (различные варианты Linux, семейство BSD, Solaris, macOS, Android, iOS и др.) права доступа задаются одинаково.

Пояснение к заданиям 12-12 золотов свчение

- Подробный вывод содержимого директории включает три нужных нам поля — режим доступа (задаётся командой chmod), владелец (задаётся командой chown) и группа (команды chown и chgrp).
- Например:

Пояснение к заданиям 12-12 золотов сечение

• Наибольший интерес для нас представляет режим. Он состоит из трёх элементов (разрешённых действий) для трёх субъектов — владельца, группы и всех остальных. Если соответствующее разрешение отсутствует, то в этом месте в списке файлов указывается знак «-».

	Владелец				Группа		Остальные			
	Чтение	Чтение Запись Исполнение или вход		Чтение	Запись	Исполнение или вход	Чтение	Запись	Исполнение или вход	
-	r	W	X	r	W	X	r	W	X	

Пояснение к заданиям 12-12 (сечение молодения)

- В приведённом ранее примере:
- -rw-r--r-- 1 test users 15 авг 17 13:28 hello.txt
- видно, что право на исполнение файла отсутствует у всех субъектов, право на чтение есть у всех, а право на запись есть только у владельца.

	Владелец				Группа		Остальные			
	Чтение	ение Запись Исполнение или вход		Чтение	Чтение Запись Испо. или		Чтение	Запись	Исполнение или вход	
-	r	W	-	r	-	-	r	-	-	

Пояснение к заданиям 12-12 (сечение молодения)

• Для экономии времени и места часто эти разрешения записываются в виде числа в восьмеричной системе счисления. Для понимания принципа, можно записать разрешения в виде двоичного числа, где 1 обозначает наличие разрешения, а 0 — отсутствие. В приведённом примере это будет число 110100100₂. Если перевести его в восьмеричную систему счисления, получится короткое и удобное в использовании значение 644₈. В командах, управляющих разрешениями (например, chmod) основание системы счисления не указывают, поэтому использоваться будет только значение числа 644.

	Владелец				Группа		Остальные			
	Чтение	тение Запись Исполнение или вход		Чтение Запись		Исполнение или вход	Чтение	Запись	Исполнение или вход	
-	r	W	-	r	-	-	r	-	-	

Пояснение к заданиям 11 и 200 годаниям 11 и 200

 Для решения этих заданий потребуется умение понимать алгоритмы, записанные на каком-либо языке программирования.
 Примеры программного кода приведены на двух часто используемых языках — С++ и Pascal.

```
/* Пример кода на языке С++ */
std::string crypt(const std::string view& msg)
   int i = 1:
   std::string result;
   for(char ch: msg) {
     if (ch!='') ch = ch + i;
     while (ch > 'z') ch = ch - 26:
     result = result + ch:
   return result:
 (* Пример кода на языке Pascal *)
function crypt(var msg: string): string;
var i, k, c: integer; result: string; ch: char;
begin
 i := 1: result := ":
 for k := 1 to length(msg) do begin
  ch := msg[k]; c := ord(ch);
if ch <> ' ' then c := c + i;
   i := i + 1;
   while c > ord('z') do c := c - 26;
   result := result + chr(c);
 end:
 exit(result):
end:
```

В данном примере представлена функция, принимающая на вход строку и возвращающая результат также в виде строки. Из названия функции можно предположить, что она каким-то образом осуществляет шифрование. Поскольку больше никаких данных в неё не передаётся, шифрование осуществляется либо без ключа, либо с фиксированным ключом.

```
/* Пример кода на языке С++ */
std::string crypt(const std::string view& msg)
   int i = 1:
   std::string result;
   for(char ch: msg) {
     if (ch!='') ch = ch + i;
     while (ch > 'z') ch = ch - 26;
     result = result + ch:
   return result:
 (* Пример кода на языке Pascal *)
function crypt(var msg: string): string;
var i, k, c: integer; result: string; ch: char;
begin
 i := 1; result := ";
 for k := 1 to length(msg) do begin
  ch := msg[k]; c := ord(ch);
if ch <> ' ' then c := c + i;
  i := i + 1:
  while c > ord('z') do c := c - 26;
  result := result + chr(c);
 end:
 exit(result);
end:
```

• Рассмотрим, что именно происходит в этой функции. Основная часть её — это цикл, перебирающий все символы исходной строки. Переменная ch внутри цикла принимает значение каждого из символов исходной строки.

```
/* Пример кода на языке С++ */
std::string crypt(const std::string view& msg)
   int i = 1:
   std::string result;
   for(char ch: msg) {
     if (ch!='') ch = ch + i;
     while (ch > 'z') ch = ch - 26:
     result = result + ch:
   return result:
 ′* Пример кода на языке Pascal *)
function crypt(var msg: string): string;
var i, k, c: integer; result: string; ch: char;
begin
 i := 1: result := ":
 for k := 1 to length(msg) do begin
  ch := msg[k]; c := ord(ch);
if ch <> ' ' then c := c + i;
   i := i + 1;
   while c > ord('z') do c := c - 26;
   result := result + chr(c);
 end:
 exit(result);
end:
```

- Поскольку не все диалекты языка Pascal поддерживают арифметические операции с символьными переменными, в этом примере используются ASCII-коды соответствующих символов. Для конвертации символа в его код используется функция ord, для обратного преобразования chr. В языке C++ арифметические операции над символами работают независимо от версии стандарта, поэтому дополнительной конвертации не требуется.
- Итак, главное, что нас будет интересовать — функция выполняет манипуляции с кодами символов.

```
/* Пример кода на языке С++ */
std::string crypt(const std::string view& msg)
  int i = 1:
  std::string result;
  for(char ch: msg) {
     if (ch!='') ch = ch + i;
     while (ch > 'z') ch = ch - 26:
     result = result + ch:
  return result:
 (* Пример кода на языке Pascal *)
function crypt(var msg: string): string;
var i, k, c: integer; result: string; ch: char;
begin
 i := 1: result := ":
 for k := 1 to length(msg) do begin
  ch := msg[k]; c := ord(ch);
  if ch <> ' then c := c + i;
  i := i + 1:
  while c > ord('z') do c := c - 26;
  result := result + chr(c);
 end:
 exit(result);
end:
```

 Также внутри цикла используется целочисленная переменная і. Судя по алгоритму, эта переменная принимает значения 1, 2, 3 и т. д., т. е. это порядковый номер символа в исходной строке, считая от 1.

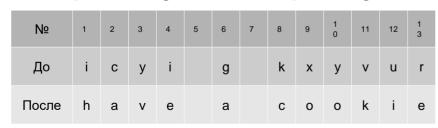
```
/* Пример кода на языке С++ */
std::string crypt(const std::string view& msg)
  int i = 1:
  std::string result;
  for(char ch: msg) {
     if (ch != ' ') ch = ch + i;
     while (ch > 'z') ch = ch - 26:
     result = result + ch:
  return result:
 (* Пример кода на языке Pascal *)
function crypt(var msg: string): string;
var i, k, c: integer; result: string; ch: char;
begin
 i := 1: result := ":
 for k := 1 to length(msg) do begin
  ch := msg[k]; c := ord(ch);
  if ch <> ' then c := c + i;
  i := i + 1;
  while c > ord('z') do c := c - 26;
  result := result + chr(c);
 end:
 exit(result);
end:
```

 Код символа подвергается преобразованию только в том случае, если этот символ — не пробел. Преобразование заключается в том, чтобы прибавить к коду символа порядковый номер его в исходной строке.

```
/* Пример кода на языке С++ */
std::string crypt(const std::string view& msg)
   int i = 1:
   std::string result;
   for(char ch: msg) {
     if (ch!='') ch = ch + i;
     while (ch > 'z') ch = ch - 26:
     result = result + ch:
   return result:
 (* Пример кода на языке Pascal *)
function crypt(var msg: string): string;
var i, k, c: integer; result: string; ch: char;
begin
 i := 1: result := ":
 for k := 1 to length(msg) do begin
  ch := msg[k]; c := ord(ch);
if ch <> ' ' then c := c + i;
   i := i + 1;
   while c > ord('z') do c := c - 26:
   result := result + chr(c);
 end:
 exit(result):
end:
```

- Если после преобразования код символа превышает таковой для буквы «z», то код уменьшается на количество букв в латинском алфавите. Таким образом, после буквы «z» снова следует буква «a».
- Можно также заметить, что функция будет корректно работать только со строчными латинскими буквами.

```
/* Пример кода на языке С++ */
std::string crypt(const std::string view& msg)
   int i = 1:
   std::string result;
   for(char ch: msg) {
     if (ch!='') ch = ch + i;
     while (ch > 'z') ch = ch - 26:
     result = result + ch:
   return result:
 (* Пример кода на языке Pascal *)
function crypt(var msg: string): string;
var i, k, c: integer; result: string; ch: char;
begin
 i := 1: result := ":
 for k := 1 to length(msg) do begin
  ch := msg[k]; c := ord(ch);
if ch <> ' ' then c := c + i;
   i := i + 1;
   while c > ord('z') do c := c - 26;
  result := result + chr(c);
 end:
 exit(result):
end:
```


- Таким образом, полностью алгоритм можно понять так:
- Каждый символ из алфавита «а...z» циклически сдвигается вперёд на величину, являющуюся порядковым номером этого символа в строке.

 Например, попробуем зашифровать по этому алгоритму строку «hello world»:

Nº	1	2	3	4	5	6	7	8	9	10	11
До	h	е	ı	ı	0		W	0	r	I	d
После	i	g	0	р	t		d	W	а	V	0

Каждый символ из алфавита «а...z» циклически сдвигается вперёд на величину, являющуюся порядковым номером! этого символа в строке.

• Соответственно, для расшифрования потребуется сдвинуть символы в обратную сторону:

Каждый символ из алфавита «а...z» циклически сдвигается вперёд на величину, являющуюся порядковым номером! этого символа в строке.

```
/* Пример кода на языке С++ */
bool check(const std::string view& pw)
  int l = pw.length();
  int s = 0:
  if (1 < 2) return false;
  for(chár ch: pw) {
     if (ch < 'a' or ch > 'z') return false;
     s = s + (ch - 'a') + 1:
  if (s \% | == 3) return true;
  return false:
(* Пример кода на языке Pascal *)
function check(var pw: string): boolean;
var I, s, i: integer; ch: char;
begin
 I := length(pw): s := 0:
 if I < 2 then exit(false)
 else
  for i := 1 to l do begin
    ch := pw[i]:
    if (ch < 'a') or (ch > 'z') then exit(false);
    s := s + (ord(ch) - ord(a')) + 1;
  end:
 if s mod I = 3 then exit(true);
 exit(false);
end:
```

• В этом примере представлена функция, принимающая на вход строку и возвращающая булево значение (истина или ложь). Из названия функции можно предположить, что она что-то проверяет. По условию задачи это проверка «правильности» пароля.

```
/* Пример кода на языке С++ */
bool check(const std::string view& pw)
  int l = pw.length();
  int s = 0:
  if (1 < 2) return false;
  for(char ch: pw) {
     if (ch < 'a' or ch > 'z') return false;
     s = s + (ch - 'a') + 1:
  if (s \% | == 3) return true;
  return false:
 ′* Пример кода на языке Pascal *)
function check(var pw: string): boolean;
var I, s, i: integer; ch: char;
begin
 I := length(pw): s := 0:
 if I < 2 then exit(false)
 else
  for i := 1 to l do begin
    ch := pw[i]:
    if (ch < 'a') or (ch > 'z') then exit(false);
    s := s + (ord(ch) - ord(a')) + 1;
  end:
 if s mod I = 3 then exit(true);
 exit(false);
end:
```

В основе приведённого алгоритма лежит, в очень упрощённом виде, некая хэшфункция, которая преобразует строку произвольной длины в некоторое число. В данном случае вычисляется сумма порядковых номеров символов исходной строки в алфавите «а...z» и находится отстаток от деления этой суммы на длину строки.

```
/* Пример кода на языке С++ */
bool check(const std::string view& pw)
  int l = pw.length();
  int s = 0:
  if (1 < 2) return false:
  for(char ch: pw) {
     if (ch < 'a' or ch > 'z') return false;
     s = s + (ch - 'a') + 1:
  if (s \% | == 3) return true;
  return false:
 ′* Пример кода на языке Pascal *)
function check(var pw: string): boolean;
var I, s, i: integer; ch: char;
begin
 I := length(pw): s := 0:
 if I < 2 then exit(false)
 else
  for i := 1 to l do begin
    ch := pw[i]:
    if (ch < 'a') or (ch > 'z') then exit(false);
    s := s + (ord(ch) - ord(a')) + 1;
  end:
 if s mod I = 3 then exit(true);
 exit(false);
end:
```

Проверка считается пройденной успешно, если длина пароля — 2 символа или больше, и вычисленный хэш равен 3. При решении данной задачи следует обратить внимание на то, что не для любой длины пароля существуют такие значения хэша. Для строки длиной N максимальным значением остатка от деления на эту длину будет N-1, таким образом, несмотря на проверку длины в начале функции, в данном примере пароль должен содержать по крайней мере 4 символа.

Ответы на остальные задания см. в ключе.